Skip to main content

Utilization and Supplementation of Phytoextraction Potential of Some Terrestrial Plants in Metal-Contaminated Soils

  • Chapter
  • First Online:
Phytoremediation

Abstract

Urban soils are increasingly acting as a sink for a wide range of contaminants including heavy metals due to the rapid pace of development. Zn, Co, Cd, Pb, Cr, Ni, Cu, and As content of soils was quantified in a semiarid urban industrial zone in India. Metal accumulation in flora on site was also evaluated for prospects of phytoremediation. Accumulation of individual metals in soils as well as their uptake and translocation in plants differed. Calotropis procera, Chenopodium murale, and Poa annua were selected to validate their phytoremedial potential at different concentrations of Pb, Cd, and Cu. Possible enhancement of phytoextraction/phytostabilization through soil amendments was also explored. P. annua (for Pb and Cu) and C. murale (for Cd) were categorized as phytoextractors, while C. procera was categorized as a phytostabilizer of Cd. Manure, EDTA, and mycorrhizae were used as amendments, and metal accumulation trends were plant/metal specific in response to all amendments except EDTA, which enhanced metal uptake in all test species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aery NC, Rana DK (2003) Growth and cadmium uptake in barley under cadmium stress. J Environ Biol 24:117–123

    CAS  PubMed  Google Scholar 

  • Agrawal V, Sharma K (2006) Phytotoxic effects of Cu, Zn, Cd and Pb on in vitro regeneration and concomitant protein changes in Holarrhena antidysenterica. Biol Plant 50:307–310

    CAS  Google Scholar 

  • Akay A, Karaarsla E (2011) The study of the use of mycorrhizae, barley and common vetch in the remediation of Pb, Zn, Cd, As, Ni and Al contaminated soils on old mine sites. Int J Sustain Water Environ Syst 3(1):33–36

    Google Scholar 

  • Alloway BJ (ed) (1990) Heavy metals in soils. Chapman & Hall, Blackie, Glasgow, p 368

    Google Scholar 

  • Alloway BJ (1995) Soil processes and the behavior of metals. In: Alloway BJ (ed) Heavy metals in soils. Blackie, Glasgow, pp 38–57

    Google Scholar 

  • Andrade SAL, Abreu CA, Abreu MF, Silveira APD (2004) Influence of lead addition on arbuscular mycorrhiza and Rhizobium symbioses under soybean plants. Appl Soil Ecol 26:123–131

    Google Scholar 

  • Ariyakanon N, Winaipanich B (2006) Phytoremediation of copper contaminated soil by Brassica juncea (L.) Czern and Bidens alba (L.) DC. var. radiata. J Sci Res Chula Univ 31(1):49

    CAS  Google Scholar 

  • Baker AJM (1981) Accumulators and excluders – strategies in the response of plants to heavy metals. J Plant Nutr 3:643–654

    CAS  Google Scholar 

  • Baker AJM, Reeves RD, Hajar ASM (1994) Heavy metal accumulation and tolerance in British populations of the metallophyte Thlaspi caerulescens J. & C. Presl (Brassicaceae). New Phytol 127:61–68

    CAS  Google Scholar 

  • Baker AJM, McGrath SP, Reeves RD, Smith JAC (2000) Metal hyperaccumulator plants: a review of the ecology and physiology of a biological resource for phytoremediation of metal-polluted soils. In: Terry N, Bañuelos G (eds) Phytoremediation of contaminated soil and water. CRC, Boca Raton, FL, pp 85–108

    Google Scholar 

  • Baudouin C, Charveron M, Tarrouse R, Gall Y (2002) Environmental pollutants and skin cancer. Cell Biol Toxicol 18:341–348

    CAS  PubMed  Google Scholar 

  • Beladi M, Habibi D, Kashani A, Paknejad F, Nooralvandi T (2011) Phytoremediation of lead and copper by Sainfoin (Onobrychis viciifolia): role of antioxidant enzymes and biochemical biomarkers. Am Eurasian J Agric Environ Sci 10(3):440–449

    CAS  Google Scholar 

  • Bennett LE, Burkhead JL, Hale KE, Terry N, Pilon M, Pilon-Smits EAH (2003) Analysis of transgenic Indian mustard plants for phytoremediation of metal-contaminated mine tailings. J Environ Qual 32:432–440

    CAS  PubMed  Google Scholar 

  • Brooks RR, Lee J, Reeves RD, Jaffré T (1977) Detection of nickeliferous rocks by analysis of herbarium specimens of indicator plants. J Geochem Explor 7:49–57

    CAS  Google Scholar 

  • Brown S, Chaney R, Angle JS, Baker AJM (1994) Phytoremediation potential of Thlaspi caerulescens and bladder campion for zinc-contaminated and cadmium-contaminated soil. J Environ Qual 23:1151–1157

    CAS  Google Scholar 

  • Brown SL, Chaney RL, Angle JS, Baker AM (1995) Zinc and cadmium uptake by hyperaccumulator Thlaspi caerulescens grown in nutrient solution. Soil Sci Am J 59:125–133

    CAS  Google Scholar 

  • Canadian Environmental Quality Guidelines (2003) The Canadian Council of Ministers of the Environment

    Google Scholar 

  • Chaiyarat R, Suebsima R, Putwattana N, Kruatrachue M, Pokethitiyook P (2011) Effects of soil amendments on growth and metal uptake by Ocimum gratissimum grown in Cd/Zn-contaminated soil. Water Air Soil Pollut 214:383–392

    CAS  Google Scholar 

  • Chaney RL, Giordano PM (1977) Microelements as related to plant deficiencies and toxicities. In: Elliot LF, Stevenson FJ (eds) Soils for management of organic wastes and waste waters. SSSA, Madison, WI, pp 235–279

    Google Scholar 

  • Chen H (2000) Chemical method and phytoremediation of soil contaminated with heavy metals. Chemosphere 41:229–234

    CAS  PubMed  Google Scholar 

  • Chen H, Cutright TJ (2002) The interactive effects of chelator, fertilizer and rhizobacteria for enhancing phytoremediation of heavy metal contaminated soil. J Soil Sediment 2:203–210

    CAS  Google Scholar 

  • Chen YH, Li XD, Shen ZG (2004) Leaching and uptake of heavy metals by ten different species of plants during an EDTA assisted phytoextraction process. Chemosphere 57:187–196

    CAS  PubMed  Google Scholar 

  • Chen X, Wu C, Tang J, Hu S (2005) Arbuscular mycorrhizae enhance metal lead uptake and growth of host plants under a sand culture experiment. Chemosphere 60:665–667

    CAS  PubMed  Google Scholar 

  • Clemens S (2001) Molecular mechanisms of plant metal tolerance and homeostasis. Planta 212:475–486

    CAS  PubMed  Google Scholar 

  • Clemente R, Walker DJ, Berna MP (2005) Uptake of heavy metals and As by Brassica juncea grown in a contaminated soil in Aznalcollar (Spain): the effect of soil amendments. Environ Pollut 138:46–58

    CAS  PubMed  Google Scholar 

  • Comino E, Fiorucci A, Menegatti S, Marocco C (2009) Preliminary test of arsenic and mercury uptake by Poa annua. Ecol Eng 35:343–350

    Google Scholar 

  • Crnković D, Ristić M, Antonović D (2006) Distribution of heavy metals and arsenic in soils of Belgrade (Serbia and Montenegro). Soil Sediment Contam 15:581–589

    Google Scholar 

  • Cull R, Hunter H, Truong P (2000) Application of vetiver grass technology in off-site pollution control. In: Proceedings of the second international conference on vetiver, Phetchaburi, Thailand, 18–22 Jan 2000, pp 12–16

    Google Scholar 

  • Cunningham SD, Berti WR (2000) Phytoextraction and phytostabilization: technical, economic and regulatory considerations of the soil-lead issue. In: Terry N, Banueles G (eds) Phytoremediation of contaminated soil and water. Lewis, Boca Raton, FL

    Google Scholar 

  • D’Souza R, Varun M, Masih J, Paul MS (2010) Identification of Calotropis procera L. as a potential phytoaccumulator of heavy metals from contaminated soils in Urban North Central India. J Hazard Mater 184:457–464

    PubMed  Google Scholar 

  • Davies FT, Puryear JD, Newton RJ, Egilla JN, Grossi JAS (2001) Mycorrhizal fungi enhance accumulation and tolerance of chromium in sunflower (Helianthus annuus). J Plant Physiol 158:777–789

    CAS  Google Scholar 

  • De Miguel E, Jiménez de Grado M, Llamas JF, Martín-Dorado A, Mazadiego LF (1998) The overlooked contribution of compost application to the trace element load in the urban soil of Madrid (Spain). Sci Tot Environ 215:113–122

    Google Scholar 

  • del Castilho P, Chardon WJ, Salomons W (1993) Influence of cattle-manure slurry application on the solubility of cadmium, copper, and zinc in a manured acidic, loamy-sand soil. J Environ Qual 22:689–697

    Google Scholar 

  • Ebbs SD, Kochain LV (1997) Toxicity of zinc and copper to Brassica species: implication for phytoremediation. J Environ Qual 26:776–781

    CAS  Google Scholar 

  • Ebbs SD, Lasat MM, Brandy DJ, Cornish J, Gordon R, Kochian LV (1997) Heavy metals in the environment: phytoextraction of cadmium and zinc from a contaminated soil. J Environ Qual 26:1424–1430

    CAS  Google Scholar 

  • EPA (Environmental Protection Agency) (2001) Office of solid-waste and emergency response. Brownfields technology primer: selecting and using phytoremediation for site cleanup. EPA 542-R-01-006. Environ Sci Technol 31:182–186

    Google Scholar 

  • EPA (Environmental Protection Agency) (2003) Treatment technologies for site cleanup: annual status report (eleventh edition), EPA-542-R-03-009. Solid Waste and Emergency Response, Cincinnati, OH

    Google Scholar 

  • Ernst WHO (1996) Bioavailability of heavy metals and decontamination of soils by plants. Appl Geochem 11:163–167

    Google Scholar 

  • Fageria NK, Baligar VC, Clark RB (2002) Micronutrients in crop production. Adv Agron 77:185–268

    Google Scholar 

  • Fellet G, Marchiol L, Perosa D, Zerbi G (2007) The application of phytoremediation technology in a soil contaminated by pyrite cinders. Ecol Eng 31:207–214

    Google Scholar 

  • Fitz WJ, Wenzel WW (2002) Arsenic transformation in the soil-rhizosphere-plant system, fundamentals and potential application of phytoremediation. J Biotechnol 99:259–278

    CAS  PubMed  Google Scholar 

  • Ghosh M, Singh SP (2005) A comparative study of cadmium phytoextraction by accumulator and weed species. Environ Pollut 133:365–371

    CAS  PubMed  Google Scholar 

  • Göhre V, Paszkowski U (2006) Contribution of the arbuscular mycorrhizal symbiosis to heavy metal phytoremediation. Planta 223:1115–1122

    PubMed  Google Scholar 

  • Harris RF, Karlen DL, Mulla DJ (1996) A conceptual framework for assessment and management of soil quality and health. In: Doran JW, Jones AJ (eds) Methods for assessing soil quality. Soil Science Society of America, Madison, WI, pp 61–82, Special Publication No. 49

    Google Scholar 

  • Hasan SA, Ali B, Hayat S, Ahmad A (2007) Cadmium induced changes in the growth and carbonic anhydrase activity of chickpea. Turk J Biol 31:137–140

    CAS  Google Scholar 

  • Hinchman RR, Negri MC, Gatliff EE (1998) Phytoremediation: using green plants to clean up contaminated soil, groundwater, and- wastewater. Submitted to the U.S. Department of Energy, Assistant Secretary for Energy Efficient and Renewable Energy under Contract W-31-109-Eng-38

    Google Scholar 

  • Hossain MF (2006) Arsenic contamination in Bangladesh: an overview. Agric Ecosyst Environ 113:1–16

    CAS  Google Scholar 

  • Huang JW, Chen J, Cunningham SD (1997a) Phytoextraction of lead from contaminated soils. In: Phytoremediation of soil and water contaminants, ACS symposium series, Washington, DC, pp 283–298

    Google Scholar 

  • Huang J, Chen J, Berti W, Cunningham S (1997b) Phytoremediation of lead-contaminated soils: role of synthetic chelates in lead phytoextraction. Environ Sci Technol 31:800–805

    CAS  Google Scholar 

  • Imperato M, Adamo P, Naimo D, Arienzo M, Stanzione D, Violante P (2003) Spatial distribution of heavy metals in urban soils of Naples city (Italy). Environ Pollut 124:247–256

    CAS  PubMed  Google Scholar 

  • Janoušková M, Vosátka M, Rossi L, Lugon-Moulin N (2007) Effects of arbuscular mycorrhizal inoculation on cadmium accumulation by different tobacco (Nicotiana tabacum L.) types. Appl Soil Ecol 35:502–510

    Google Scholar 

  • Joner EJ, Leyval C, Briones R (2000) Metal binding capacity of arbuscular mycorrhizal mycelium. Plant Soil 226:227–234

    CAS  Google Scholar 

  • Kabata-Pendias A (2001) Trace elements in soils and plants. CRC, Boca Raton, FL

    Google Scholar 

  • Kahle P (2000) Schwermetallstatus Rostocker Gartenböden. J Plant Nutr Soil Sci 163:19–196

    Google Scholar 

  • Kayser A (2000) Evaluation and enhancement of phytoextraction of heavy metals from contaminated soils. In: Swiss Federal Institute of Technology Zürich, Zürich, p 153

    Google Scholar 

  • Khan AG, Kuek C, Chaudhry TM, Khoo CS, Hayes WJ (2000) Role of plants, mycorrhizae and phytochelators in heavy metal contaminated land remediation. Chemosphere 41:197–207

    CAS  PubMed  Google Scholar 

  • Knox AS, Seaman JC, Mench M, Vangronsveld J (2001) Remediation of metal and radionuclides contaminated soils. In: Iskandar IK (ed) Environmental restoration of metals-contaminated soils. CRC, Boca Raton, FL, pp 21–60

    Google Scholar 

  • Knox AS, Kaplan DI, Adriano DC, Hinton TG, Wilson MD (2003) Apatite and phillipsite as sequestering agents for metals and radionuclides. J Environ Qual 32:515–525

    CAS  PubMed  Google Scholar 

  • Krämer U (2005) Phytoremediation: novel approaches to cleaning up polluted soils. Curr Opin Biotechnol 16:133–141

    PubMed  Google Scholar 

  • Kumpiene J, Lagerkvist A, Maurice C (2008) Stabilization of As, Cr, Cu, Pb and Zn in soil using amendments – a review. Waste Manage 28:215–225

    CAS  Google Scholar 

  • Küpper H, Lombi E, Zhao FJ, McGrath SP (2000) Cellular compartmentation of cadmium and zinc in relation to other elements in the hyperaccumulator Arabidopsis halleri. Planta 212:75–84

    PubMed  Google Scholar 

  • Lan C, Chen G, Li L, Wong MH (1992) Use of cattails in treating wastewater from a lead/zinc mine. Environ Manage 16:75–80

    Google Scholar 

  • Lasat MM (2000) The use of plants for the removal of toxic metals from contaminated. Project report. American Association for the Advancement of Science Environmental Science and Engineering Fellow

    Google Scholar 

  • Lesage E, Meers E, Vervaeke P, Lamsal S, Hopgood M, Tack F, Verlov M (2005) Enhanced phytoextraction. II. Effect of EDTA and citric acid on heavy metal uptake by Helianthus annuus from a calcareous soil. Int J Phytoremediation 7:143–152

    CAS  PubMed  Google Scholar 

  • Leyval C, Joner EJ, del Val C, Haselwandter K (2002) Potential of arbuscular mycorrhizal fungi for bioremediation. In: Gianinazzi S, Schuepp H, Barea JM, Haselwandter K (eds) Mycorrhizal technology in agriculture. Birkhauser, Berlin, pp 175–186

    Google Scholar 

  • Li XD, Lee SL, Wong SC, Shi WZ, Thornton I (2004) The study of metal contamination in urban soils of Hong Kong using a GIS-based approach. Environ Pollut 129(1):113–124

    CAS  PubMed  Google Scholar 

  • Liphadzi MS, Kirkham MB (2005) Phytoremediation of soil contaminated with heavy metals: a technology for rehabilitation of the environment. S Afr J Bot 71(1):24–37

    CAS  Google Scholar 

  • Liphadzi MS, Kirkham MB (2006) Heavy-metal displacement in chelate-treated soil with sludge during phytoremediation. J Plant Nutr Soil Sci 169(6):737–744

    CAS  Google Scholar 

  • Lombi E, Zhao F, McGrath S, Young S, Sacchi G (2001a) Physiological evidence for a high-affinity cadmium transporter highly expressed in a Thlaspi caerulescens ecotype. New Phytol 149:53–60

    CAS  Google Scholar 

  • Lombi E, Zhao FJ, Dunham SJ, McGrath SP (2001b) Phytoremediation of heavy metal contaminated soils: natural hyperaccumulation versus chemically enhanced phytoextraction. J Environ Qual 30:1919–1926

    CAS  PubMed  Google Scholar 

  • Lu Y, Gong ZT, Zhang GL, Burghardt W (2003) Concentrations and chemical speciation of Cu, Zn, Pb and Cr of urban soils in Nanjing, China. Geoderma 115:101–111

    CAS  Google Scholar 

  • Luo CL, Shen ZG, Li XD (2005) Enhanced phytoextraction of Cu, Pb, Zn and Cd with EDTA and EDDS. Chemosphere 59:1–11

    CAS  PubMed  Google Scholar 

  • Luo CL, Shen ZG, Li XD (2008) Hot NTA application enhanced metal phytoextraction from contaminated soil. Water Air Soil Pollut 188:127–137

    CAS  Google Scholar 

  • MacFarlane GR, Koller CE, Blomberg SP (2007) Accumulation and partitioning of heavy metals in mangroves: a synthesis of field-based studies. Chemosphere 69(9):1454–1464

    CAS  PubMed  Google Scholar 

  • Madrid F, Liphadzi MS, Kirkham MB (2003) Heavy metal displacement in chelate irrigated soil during phytoremediation. J Hydrol 272(1):107–119

    CAS  Google Scholar 

  • Madrid L, Diaz-Barrientos E, Madrid F (2004) Metals in urban soils of Sevilla: seasonal changes and relations with other soil components and plant contents. Eur J Soil Sci 55:209–217

    CAS  Google Scholar 

  • Maier RM, Pepper JL, Gerba CP (2000) Environmental microbiology. Academic, San Diego, CA, p 585

    Google Scholar 

  • Manta DS, Angelone M, Bellanca A, Neri R, Sprovieri M (2002) Heavy metals in urban soils: a case study from the city of Palermo (Sicily), Italy. Sci Total Environ 300:229–243

    CAS  PubMed  Google Scholar 

  • Marchiol L, Sacco P, Assolari S, Zerbi G (2004) Reclamation of polluted soil: phytoremediation potential of crop-related Brassica species. Water Air Soil Pollut 158:345–356

    CAS  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants. Academic, London, pp 24–28

    Google Scholar 

  • Meharg AA, Cairney JWG (2000) Co-evolution of mycorrhizal symbionts and their hosts to metal-contaminated environments. Adv Ecol Res 30:69–112

    CAS  Google Scholar 

  • Mellem JJ, Baijnath H, Odhav B (2009) Translocation and accumulation of Cr, Hg, As, Pb, Cu and Ni by Amaranthus dubius (Amaranthaceae) from contaminated sites. J Environ Sci Health 44:568–575

    CAS  Google Scholar 

  • Mench M, Vangronsveld J, Lepp NW, Edwards R (1998) Physicochemical aspects and efficiency of trace element immobilization by soil amendments. In: Vangronsveld J, Cunningham SD (eds) Metal contaminated soils: in situ inactivation and phytorestoration. Springer, New York, pp 151–182

    Google Scholar 

  • Mendez MO, Maier RM (2008) Phytostabilization of mine tailings in arid and semiarid environments – an emerging remediation technology. Environ Health Perspect 116:278–283

    PubMed Central  CAS  PubMed  Google Scholar 

  • Modis K, Komnitsas K (2007) Optimum sampling density for the prediction of acid mine drainage in an underground sulphide mine. Mine Water Environ 26:237–242

    CAS  Google Scholar 

  • Mulligan CN, Yong RN, Gibbs BF (2001) Remediation technologies for metal contaminated soils and groundwater: an evaluation. Eng Geol 60:193–200

    Google Scholar 

  • Nriagu JO (1979) Global inventory of natural and anthropogenic emissions of trace metals to the atmosphere. Nature 279:409–411

    CAS  PubMed  Google Scholar 

  • Orcutt DM, Nilsen ET (2000) The physiology of plants under stress, soil and biotic factors. Wiley, New York, pp 481–517

    Google Scholar 

  • Pajuelo E, Carrasco JA, Romero LC, Chamber MA, Gotor C (2007) Evaluation of the metal phytoextraction potential of crop legumes. Regulation of the expression of O-acetylserine (thiol)lyase under metal stress. Plant Biol 9:672–681

    CAS  PubMed  Google Scholar 

  • Palmer CE, Warwick S, Keller W (2001) Brassicaceae (Cruciferae) family, plant biotechnology, and phytoremediation. Int J Phytoremediation 3:245–287

    CAS  Google Scholar 

  • Pedron F, Petruzzelli G, Barbafieri M, Tassi E (2009) Strategies to use phytoextraction in very acidic soil contaminated by heavy metals. Chemosphere 75(6):808–814

    CAS  PubMed  Google Scholar 

  • Peters EC, Gassman NJ, Firman JC, Richmond RH, Power EA (1997) Ecotoxicology of tropical marine ecosystems. Environ Toxicol Chem 16:12–40

    CAS  Google Scholar 

  • Phaenark C, Pokethitiyook P, Kruatrachue M, Ngernsansaruay C (2009) Cd and Zn accumulation in plants from the Padaeng zinc mine area. Int J Phytoremediation 11:479–495

    CAS  PubMed  Google Scholar 

  • Phetsombat S, Kruatrachue M, Pokethitiyook P, Upatham S (2006) Toxicity and bioaccumulation of cadmium and lead in Salvinia cucullata. J Environ Biol 27(4):645–652

    CAS  PubMed  Google Scholar 

  • Pitchtel J, Kuroiwa K, Sawyerr HT (2000) Distribution of Pb, Cd, and Ba in soils and plants of two contaminated sites. Environ Pollut 110:171–178

    Google Scholar 

  • Porębska G, Ostrowska A (1999) Heavy metal accumulation in wild plants: implications for phytoremediation. Pol J Environ Stud 8(6):433–442

    Google Scholar 

  • Prasad MNV, Freitas H (2006) Metal tolerant plants: biodiversity prospecting for phytoremediation technology. In: Prasad MNV, Sajwan KS, Naidu R (eds) Trace elements in the environment: biogeochemistry, biotechnology, and bioremediation. Taylor and Francis, Boca Raton, FL, pp 483–506

    Google Scholar 

  • Pratas J, Favas PJC, D’Souza R, Varun M, Paul MS (2013) Phytoremedial assessment of flora tolerant to heavy metals in the contaminated soils of an abandoned Pb mine in Central Portugal. Chemosphere 90:2216–2225

    CAS  PubMed  Google Scholar 

  • Probst A, Liu H, Fanju M, Liao B, Hollande E (2009) Response of Vicia faba L. to metal toxicity on mine tailing substrate: geochemical and morphological changes in leaf and root. Environ Exp Bot 66:297–308

    CAS  Google Scholar 

  • Psaras GK, Manetas Y (2001) Nickel localization in seeds of the metal hyperaccumulator Thlaspi pindicum Hausskn. Ann Bot 88:513–516

    CAS  Google Scholar 

  • Pulford ID, Watson C (2003) Phytoremediation of heavy metal contaminated land by trees – a review. Environ Int 29(4):529–540

    CAS  PubMed  Google Scholar 

  • Rana A, Ahmad M (2002) Heavy metal toxicity: effect on plant growth and metal uptake by wheat, and on free living Azotobacter. Water Air Soil Pollut 138(1–4):165–180

    Google Scholar 

  • Reeves RD, Baker AJM (2000) Metal accumulating plants. In: Raskin I, Ensley BD (eds) Phytoremediation of toxic metals: using plants to clean-up the environment. Wiley, New York, pp 193–230

    Google Scholar 

  • Romeiro S, Ana MM, Lagôa A, Furlani PR, de Abreu CA, Abreu MF, Erismann NM (2006) Lead uptake and tolerance of Ricinus communis L. Braz J Plant Physiol 18(4):483–489

    CAS  Google Scholar 

  • Romkens PFAM, Salomons W (1998) Cd, Cu, and Zn solubility in arable and forest soils: consequences of land use changes for metal mobility and risk assessment. Soil Sci 163(11):859–871

    CAS  Google Scholar 

  • Saifullah ME, Qadir M, de Caritat P, Tack FMG, Laing G, Zia MH (2009) EDTA-assisted Pb phytoextraction. Chemosphere 74:1279–1291

    CAS  PubMed  Google Scholar 

  • Saifullah MH, Meers E, Ghafoor A, Murtaza G, Sabir M, Rehman M, Tack FMG (2010) Chemically enhanced phytoextraction of Pb by wheat in texturally different soils. Chemosphere 79(6):652–658

    CAS  PubMed  Google Scholar 

  • Salido AL, Hasty KL, Lim JM, Butcher DJ (2003) Phytoremediation of arsenic and lead in contaminated soil using Chinese brake ferns (Pteris vittata) and Indian mustard (Brassica juncea). Int J Phytoremediation 5(2):89–103

    CAS  PubMed  Google Scholar 

  • Salt DE, Blaylock M, Kumar NPBA, Dushenkov V, Ensley D, Chet I, Raskin I (1995) Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants. Biotechnology 13:468–474

    CAS  PubMed  Google Scholar 

  • Sánchez-Martin MJ, Garcia-Delgado M, Lorenzo LF, Rodriguez-Cruz MS, Arienzo M (2007) Heavy metals in sewage sludge amended soils determined by sequential extraction as a function of incubation time of soils. Geoderma 142(3–4):262–273

    Google Scholar 

  • Sappin-Didier V, Vansuyts G, Mench M, Briat JF (2005) Cadmium availability at different soil pH to transgenic tobacco overexpressing ferritin. Plant Soil 270:189–197

    CAS  Google Scholar 

  • Saraswat S, Rai JPN (2009) Phytoextraction potential of six plant species grown in multimetal contaminated soil. Chem Ecol 25:1–11

    CAS  Google Scholar 

  • Saxena PK, Raj SK, Dan T, Perras MR, Vettakkorumakankav NN (1999) Phytoremediation of metal contaminated and polluted soils. In: Prasad MNV, Hagemeyer J (eds) Heavy metal stress in plants – from molecules to ecosystems. Springer, Heidelberg, pp 305–329

    Google Scholar 

  • Sekhar KC, Chary NS, Kamala CT, Vairamani M, Anjaneyulu Y, Balaram V, Sorlie JE (2006) Risk communications: around the world environmental risk assessment studies of heavy metal contamination in the industrial area of Kattedan, India – a case study. Hum Ecol Risk Assess 12:408–422

    CAS  Google Scholar 

  • SEPAC (State Environmental Protection Administration of China) (1995) Chinese Environmental Quality Standard for Soils (GB15618-1995)

    Google Scholar 

  • Seregin TV, Ivanov VB (2001) Physiological aspects of toxin action of cadmium and lead on high plants. Plant Physiol 48:606–630

    Google Scholar 

  • Shen YY, Dai JY, Hu DC, Gu WL, He RY, Zheng B (1990) Studies on physiological effects of cadmium on resistant in maize and mungbean. J Shenyang Agric Univ 21:191–195

    Google Scholar 

  • Shu WS, Ye ZH, Lan CY, Zhang ZQ, Wong MH (2002) Lead, zinc and copper accumulation and tolerance in populations of Paspalum distichum and Cynodon dactylon. Environ Pollut 120:445–453

    CAS  PubMed  Google Scholar 

  • Simeoni LA, Barbarick LA, Sabey BR (1984) Effect of small scale composting of sewage sludge on heavy metal availability to plants. J Environ Qual 13:264–268

    Google Scholar 

  • Solhi M, Hossain A, Shareatmadari H, Jabbasi MA (2005) Lead and Pb extraction potential of two common crop plants Helianthus annuus and Brassica napus. Water Air Soil Pollut 167(1–4):59–71

    CAS  Google Scholar 

  • Tandy S, Schulin R, Suter MJF, Nowack B (2005) Determination of [S, S′]-ethylenediamine disuccinic acid (EDDS) by high performance liquid chromatography after derivatization with FMOC. J Chromatogr A1077:37–43

    Google Scholar 

  • Thornton I (1991) Metal contamination of soil in urban areas. In: Bullock P, Gregory PJ (eds) Soils in the urban environment. Blackwell, Oxford, pp 47–75

    Google Scholar 

  • Uraguchi S, Watanabe I, Yoshitomi A, Kiyono M, Kuno K (2006) Characteristics of cadmium accumulation and tolerance in novel Cd-accumulating crops, Avena strigosa and Crotalaria juncea. J Exp Bot 57(12):2955–2965

    CAS  PubMed  Google Scholar 

  • USEPA (United States Environmental Protection Agency) (1998) A citizen’s guide to phytoremediation, EPA 542-F-98-011, Technology Innovation Office, Office of Solid Waste and Emergency Response, Washington, DC

    Google Scholar 

  • USEPA (United States Environmental Protection Agency) (2000) A guide to developing and documenting cost estimates during the feasibility study (EPA 540-R-00-002). http://www.epa.gov/superfund/resources/remedy/costest.html

  • Vamerali T, Bandiera M, Mosca G (2010) Review: field crops for phytoremediation of metal-contaminated land. Environ Chem Lett 8:1–17

    CAS  Google Scholar 

  • Varun M, D’Souza R, Kumar D, Paul MS (2011a) Bioassay as monitoring system for lead phytoremediation through Crinum asiaticum L. Environ Monit Assess 178(1–4):373–381

    Google Scholar 

  • Varun M, D’Souza RJ, Pratas J, Paul MS (2011b) Evaluation of phytostabilization, a green technology to remove heavy metals from industrial sludge using Typha latifolia L. Biotechnol Bioinf Bioeng 1(1):137–145

    Google Scholar 

  • Varun M (2011c) Metabolism and uptake of heavy metals by some plants. Ph.D. Dissertation, Dr B R Ambedkar university Agra, India

    Google Scholar 

  • Varun M, D’Souza R, Pratas J, Paul MS (2012) Metal contamination of soils and plants associated with the glass industry in North Central India: prospects of phytoremediation. Environ Sci Pollut Res 19(1):269–281

    CAS  Google Scholar 

  • Vickerman DB, Shannon MC, Baneuelos GS, Grieve CM, Trumble JT (2002) Evaluation of Atriplex lines for selenium accumulation, salt tolerance and suitability for a key agricultural insect pest. Environ Pollut 120:463–473

    CAS  PubMed  Google Scholar 

  • VROM (Dutch Ministry of Housing, Spatial Planning and the Environment) (2000) Ministerial circular on target and intervention values for soil remediation. Annex A: target values, soil remediation intervention values and indicative levels for serious contamination, DBO/1999226863, February 4

    Google Scholar 

  • Wang FY, Lin X, Yin R (2005) Heavy metal uptake by arbuscular mycorrhizas of Elsholtzia splendens and the potential for phytoremediation of contaminated soil. Plant Soil 269:225–232

    CAS  Google Scholar 

  • WHO (World Health Organisation) (1997) Health and environment in sustainable development. WHO, Geneva

    Google Scholar 

  • Xu S, Tao S (2004) Coregionalization analysis of heavy metals in the surface soil of inner Mongolia. Sci Total Environ 320:73–87

    CAS  PubMed  Google Scholar 

  • Yang B, Shu W, Ye Z, Lan C, Wong M (2003) Growth and metal accumulation in vetiver and two Sesbania species on lead/zinc mine tailings. Chemosphere 52:1593–1600

    CAS  PubMed  Google Scholar 

  • Yoon J, Cao X, Zhou Q, Ma LQ (2006) Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site. Sci Total Environ 368:456–464

    CAS  PubMed  Google Scholar 

  • Yu X, Cheng J, Wong MH (2004) Earthworm-mycorrhiza interaction on Cd uptake and growth of ryegrass. Soil Biol Biochem 37:1–7

    Google Scholar 

  • Zhou DM, Hao XZ, Wang YJ, Dong YH, Cang L (2005) Copper and Zn uptake by radish and pakchoi as affected by application of livestock and poultry manures. Chemosphere 59(2):167–175

    CAS  PubMed  Google Scholar 

Download references

Acknowledgment

Financial support from University Grants Commission [F. no. 35-47/2008(SR)] is duly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mayank Varun M.Sc., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Varun, M., D’Souza, R., Favas, P.J.C., Pratas, J., Paul, M.S. (2015). Utilization and Supplementation of Phytoextraction Potential of Some Terrestrial Plants in Metal-Contaminated Soils. In: Ansari, A., Gill, S., Gill, R., Lanza, G., Newman, L. (eds) Phytoremediation. Springer, Cham. https://doi.org/10.1007/978-3-319-10395-2_13

Download citation

Publish with us

Policies and ethics