Skip to main content

Phytoremediation of Soils Contaminated with Heavy Metals: Techniques and Strategies

  • Chapter
  • First Online:
Phytoremediation

Abstract

Environmental pollution by heavy metals and metalloids has become a severe problem worldwide, and soils became increasingly contaminated, posing a threat to ecosystems and ultimately to human health. The decision to remediate a soil depends on the present and future value of the soil, the cost of remediation, the risk posed by the soil, and the perception of that risk by the population and decision makers. Traditional technologies to remediate soils usually rely on excavation of the contaminated soil, often disposed of as a hazardous waste with or without a previous treatment. The use of plants to remove or immobilize toxic elements has arisen as a very promising alternative to conventional technologies. The use of plants to remediate soils derived from the observation of wild species found in specific environments evolved to the use of fast-growing crops and later on led to the development of genetically modified plants. Phytotechnologies include a wide range of technologies that can be applied to remediate soils through stabilization, volatilization, accumulation, and sequestration of toxic metals. In this chapter we describe the impacts of heavy metals in plants and the most important phytotechnologies available to remediate soil and substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abhilash PC, Pandey VC, Srivastava P, Rakesh PS, Chandran S, Singh N, Thomas AP (2009) Phytofiltration of cadmium from water by Limnocharis flava (L.) Buchenau grown in free-floating culture system. J Hazard Mater 170:791–797. doi:10.1016/j.jhazmat.2009.05.035

    CAS  PubMed  Google Scholar 

  • Adriano DC (2001) Trace elements in terrestrial environments: biogeochemistry, bioavailability, and risks of metals. Springer, Berlin

    Google Scholar 

  • Adriano DC, Wenzel WW, Vangronsveld J, Bolan N (2004) Role of assisted natural remediation in environmental cleanup. Geoderma 122:121–142. doi:10.1016/j.geoderma.2004.01.003

    CAS  Google Scholar 

  • Ahmad P, Umar S, Sharma S (2010) Mechanism of free radical scavenging and role of phytohormones in plants under abiotic stresses. In: Ashraf M, Ozturk M, Ahmad MSA (eds) Plant adaptation and phytoremediation. Springer, New York

    Google Scholar 

  • Ahmad A, Ghufran R, Zularisam AW (2011) Phytosequestration of metals in selected plants growing on a contaminated Okhla industrial areas, Okhla, New Delhi, India. Water Air Soil Pollut 217:255–266. doi:10.1007/s11270-010-0584-9

    CAS  Google Scholar 

  • Akpor OB, Muchie M (2010) Remediation of heavy metals in drinking water and wastewater treatment systems: processes and applications. Int J Phys Sci 5(12):1807–1817. http://www.academicjournals.org/IJPS

  • Al-Farraj AS, Al-Wabel ML (2007) Heavy metals accumulation of some plant species grown on mining area at Mahad AD Dahab, Saudi Arabia. J Appl Sci 7:1170–1175. doi:10.3923/jas.2007.1170.1175

    CAS  Google Scholar 

  • Ali H, Khan E, Sajad MA (2013) Phytoremediation of heavy metals - concepts and applications. Chemosphere 91:869–881. doi:10.1016/j.chemosphere.2013.01.075

    CAS  PubMed  Google Scholar 

  • Ali-Zade V, Alirzayeva E, Shirvani (2010) Plant resistance to anthropogenic toxicants: approaches to phytoremediation. In: Ashraf M, Ozturk M, Ahmad MSA (eds) Plant adaptation and phytoremediation. Springer, New York

    Google Scholar 

  • Alvarenga P, Gonçalves AP, Fernandes RM, Varennes A, Vallini G, Duarte E, Cunha-Queda AC (2008) Evaluation of composts and liming materials in the phytostabilization of a mine soil using perennial ryegrass. Sci Tot Environ 406:43–56. doi:10.1016/j.scitotenv.2008.07.061

    CAS  Google Scholar 

  • Alvarenga P, Gonçalves AP, Fernandes RM, de Varennes A, Vallini G, Duarte E, Cunha-Queda AC (2009) Organic residues as immobilizing agents in aided phytostabilization: (I) Effects on soil chemical characteristics. Chemosphere 74:1292–1300. doi:10.1016/j.chemosphere.2008.11.063

    CAS  PubMed  Google Scholar 

  • Alvarenga P, Palma P, Varennes A, Cunha-Queda AC (2012) A contribution towards the risk assessment of soils from the Sao Domingos Mine (Portugal): chemical, microbial and ecotoxicological indicators. Environ Pollut 161:50–56. doi:10.1016/j.envpol.2011.09.044

    CAS  PubMed  Google Scholar 

  • Alvarez PJJ, Illman WA (2006) Bioremediation and natural attenuation. Environmental science and technology. Process fundamentals and mathematical models. Wiley, Hoboken, NJ

    Google Scholar 

  • Anjum NA, Válega M, Pacheco M, Figueira E, Duarte A, Pereira E (2011) Impact of seasonal fluctuations on the sediment-mercury, its accumulation and partitioning in Halimione portulacoides and Juncus maritimus collected from Ria de Aveiro coastal lagoon (Portugal). Water Air Soil Pollut 222:1–15. doi:10.1007/s11270-011-0799-4

    CAS  Google Scholar 

  • Arisi ACM, Mocquot B, Lagriffoul A, Mench M, Foyer CH, Jouanin L (2000) Responses to cadmium in leaves of transformed poplars overexpressing γ-glutamylcysteine synthetase. Physiol Plant 109:143–149. doi:10.1034/j.1399-3054.2000.100206.x

    CAS  Google Scholar 

  • Arnich N, Lanhers MC, Laurensot F, Podor R, Montiel A, Burnel D (2003) In vitro and in vivo studies of lead immobilization by synthetic hydroxyapatite. Environ Pollut 124:139–149. doi:10.1016/S0269-7491(02)00416-5

    CAS  PubMed  Google Scholar 

  • Asada K (1999) The water–water cycle in chloroplasts: scavenging of active oxygen and dissipation of excess photons. Annu Rev Plant Physiol Plant Mol Biol 50:601–639. doi:10.1146/annurev.arplant.50.1.601

    CAS  PubMed  Google Scholar 

  • Ashraf M, Ozturk M, Ahmad MSA (2010) Toxins and their phytoremediation. In: Ashraf M, Ozturk M, Ahmad MSA (eds) Plant adaptation and phytoremediation. Springer, New York

    Google Scholar 

  • Axtell NR, Sternberg SPK, Claussen K (2003) Lead and nickel removal using Microspora and Lemna minor. Bioresour Technol 89:41–48. doi:10.1016/S0960-8524(03)00034-8

    CAS  PubMed  Google Scholar 

  • Baker AJM, Brooks RR (1989) Terrestrial higher plants which hyperaccumulate metallic elements–a review of their distribution, ecology and phytochemistry. Biorecovery 1:81–126

    CAS  Google Scholar 

  • Baker AJM, Whiting SN (2002) In search of the holy grail: a further step in understanding metal hyperaccumulation? New Phytol 155:1–4. doi:10.1046/j.1469-8137.2002.00449_1.x

    Google Scholar 

  • Bañuelos GS, Lin ZQ (2007) Acceleration of selenium volatilization in seleniferous agricultural drainage sediments amended with methionine and casein. Environ Pollut 150:306–312

    PubMed  Google Scholar 

  • Barbosa JS, Cabral TM, Ferreira DN, Agnez-Lima LF, Batistuzzo de Medeiros SR (2010) Genotoxicity assessment in aquatic environment impacted by the presence of heavy metals. Ecotoxicol Environ Saf 73:320–325. doi:10.1016/j.ecoenv. 2009.10.008a

    CAS  PubMed  Google Scholar 

  • Barcelo J, Poschenrieder C (2003) Phytoremediation: principles and perspectives. Contrib Sci 2:333–344

    Google Scholar 

  • Berti WR, Cunningham SD (2000) Phytostabilization of metals: phytoremediation of toxic metals using plants to clean up the environment. In: Raskin I, Ensley BD (eds) Phytoremediation of toxic metals: using plants to clean up the environment. Wiley, New York

    Google Scholar 

  • Bhargava A, Carmona FF, Bhargava M, Srivastava S (2012) Approaches for enhanced phytoextraction of heavy metals. J Environ Manage 105:103–120

    CAS  PubMed  Google Scholar 

  • Bizily S, Rugh C, Summers A, Meagher R (1999) Phytoremediation of methylmercury pollution: merB expression in Arabidopsis thaliana confers resistance to organomercurials. Proc Natl Acad Sci USA 96:6808–6813. doi:10.1073/pnas.96.12.6808

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bizily S, Rugh C, Meagher R (2000) Phytodetoxification of hazardous organomercurials by genetically engineered plants. Nat Biotechnol 18:213–217. doi:10.1038/72678

    CAS  PubMed  Google Scholar 

  • Blaylock JM, Salt DE, Dushenkov S, Zakharova O, Gussman C, Kapulnik Y, Ensley BD, Raskin I (1997) Enhanced accumulation of Pb in Indian mustard by soil-applied chelating agents. Environ Sci Technol 31:860–865. doi:10.1021/es960552a

    Google Scholar 

  • Bolan N, Adriano DC, Naidu R (2003) Role of phosphorous in (im)mobilization and bioavailability of heavy metals in the soil-plant system. Rev Environ Contam Toxicol 177:1–44. doi:10.1007/0-387-21725-8_1

    CAS  PubMed  Google Scholar 

  • Bolan N, Jin Hee Park JH, Robinson B, Naidu R, Huh KY (2011) Phytostabilization: a green approach to contaminant containment. Adv Agron 112:145–204

    CAS  Google Scholar 

  • Bose S, Rai V, Bhattacharya S, Chaudhuri P, Bhattacharyya AK (2011) Phytoremediation: a promising technology of bioremediation for the removal of heavy metal and organic pollutants from the soil. In: Golubev IA (ed) Handbook of phytoremediation. Environmental science. Engineering and technology. Nova Science, New York

    Google Scholar 

  • Briat JF, Lebrun M (1999) Plant responses to metal toxicity. Plant Biol Pathol 322:43–54. doi:10.1016/S0764-4469(99)80016-X

    CAS  Google Scholar 

  • Bricker TJ, Pichtel J, Brown HJ, Simmons MJ (2001) Phytoextraction of Pb and Cd from a superfund soil: effects of amendments and croppings. J Environ Sci Health A36:1597–1610. doi:10.1081/ESE-100106245

    CAS  Google Scholar 

  • Brooks RR (1998) Plants that hyperaccumulate heavy metals. CAB International, Wallingford

    Google Scholar 

  • Brooks RR, Lee J, Reeves RD, Jaffre T (1977) Detection of nickeliferous rocks by analysis of herbarium specimens of indicator plants. J Geochem Explor 7:49–57. doi:10.1016/0375-6742(77)90074-7

    CAS  Google Scholar 

  • Brown SL, Chaney RF, Angle JS, Baker AJM (1995) Zn and Cd uptake by hyperaccumulator Thlaspi caerulescens and metal tolerant Silene vulgaris, grown on sludge-amended soils. Environ Sci Technol 29:1581–1585. doi:10.1021/es00006a022

    CAS  PubMed  Google Scholar 

  • Brunetti G, Soler-Rovira P, Farrag K, Senesi N (2009) Tolerance and accumulation of heavy metals by wild plant species grown in contaminated soils in Apulia region, Southern Italy. Plant Soil 318:285–298. doi:10.1007/s11104-008-9838-3

    CAS  Google Scholar 

  • Brunner I, Luster J, Gunthardt-Goerg MS, Frey B (2008) Heavy metal accumulation and phytostabilisation potential of tree fine roots in a contaminated soil. Environ Pollut 152:559–568

    CAS  PubMed  Google Scholar 

  • Cao X, Ma LQ (2004) Effects of compost and phosphate on plant arsenic accumulation from soils near pressure-treated wood. Environ Pollut 132:435–442. doi:10.1016/j.envpol.2004.05.019

    CAS  PubMed  Google Scholar 

  • Cao X, Wahbi A, Ma L, Li B, Yang Y (2009) Immobilization of Zn, Cu, and Pb in contaminated soils using phosphate rock and phosphoric acid. J Hazard Mater 164(2–3):555–564. doi:10.1016/j.jhazmat.2008.08.034

    CAS  PubMed  Google Scholar 

  • Cazalé AC, Droillard MJ, Wilson C, Heberle-Bors E, Barbier-Brygoo H, Laurière C (1999) MAP kinase activation by hypoosmotic stress of tobacco cell suspensions: towards the oxidative burst response? Plant J 19:297–307. doi:10.1046/j.1365-313X.1999.00528.x

    PubMed  Google Scholar 

  • Chaney RL, Malik M, Li YM, Brown SL, Brewer EP, Angle JS, Baker AJM (1997) Phytoremediation of soil metals. Curr Opin Biotechnol 8:279–284. doi:10.1016/S0958-1669(97)80004-3

    CAS  PubMed  Google Scholar 

  • Chaney RL, Angle JS, Broadhurst CL, Peters CA, Tappero RV, Sparks DL (2007) Improved understanding of hyperaccumulation yields commercial phytoextraction and phytomining technologies. J Environ Qual 36:1429–1443

    CAS  PubMed  Google Scholar 

  • Chang AC, Page AL, Warneke JE (1987) Long-term sludge application on cadmium and zinc accumulation in Swiss chard and radish. J Environ Qual 16:217–221. doi:10.2134/jeq1987.00472425001600030005x

    CAS  Google Scholar 

  • Chavan PV, Dennett KE, Marchand EA, Gustin MS (2007) Evaluation of small-scale constructed wetland for water quality and Hg transformation. J Hazard Mater 149:543–547

    CAS  PubMed  Google Scholar 

  • Chehregani A, Malayeri BE (2007) Removal of heavy metals by native accumulator plants. Int J Agric Biol 9:462–465

    CAS  Google Scholar 

  • Chen H, Cutright T (2001) EDTA and HEDTA effects on Cd, Cr, and Ni uptake by Helianthus annuus. Chemosphere 45:21–28. doi:10.1016/S0045-6535(01)00031-5

    CAS  PubMed  Google Scholar 

  • Chen M, Ma LQ, Singh SP, Cao RX, Melamed R (2003) Field demonstration of in situ immobilization of soil Pb using P amendments. Adv Environ Res 8:93–102. doi:10.1016/S1093-0191(02)00145-4

    CAS  Google Scholar 

  • Chen Y, Li XD, Shen ZG (2004) Leaching and uptake of heavy metals by ten different species of plants during an EDTA-assisted phytoextraction process. Chemosphere 57(3):187–196. doi:10.1016/j.chemosphere.2004.05.044

    CAS  PubMed  Google Scholar 

  • Cheng S (2003) Heavy metals in plants and phytoremediation. Environ Sci Pollut Res 10:335–340

    CAS  Google Scholar 

  • Cherian S, Oliveira MM (2005) Transgenic plants in phytoremediation: recent advances and new possibilities. Environ Sci Technol 39:9377–9390

    CAS  PubMed  Google Scholar 

  • Chlopecka A, Adriano DC (1996) Influence of zeolite, apatite and Fe-oxide on Cd and Pb uptake by crops. Sci Total Environ 207:195–206. doi:10.1016/S0048-9697(97)00268-4

    Google Scholar 

  • Clemens S (2001) Developing tools for phytoremediation: towards a molecular understanding of plant metal tolerance and accumulation. Int J Occup Med Environ Health 14:235–239

    CAS  PubMed  Google Scholar 

  • Clemente R, Bernal MP (2006) Fractionation of heavy metals and distribution of organic carbon in two contaminated soils amended with humic acids. Chemosphere 64:1264–1273. doi:10.1016/j.chemosphere.2005.12.058

    CAS  PubMed  Google Scholar 

  • Clemente R, Almela C, Bernal MP (2006) A remediation strategy based on active phytoremediation followed by natural attenuation in a soil contaminated by pyrite waste. Environ Pollut 143:397–406. doi:10.1016/j.envpol.2005.12.011

    CAS  PubMed  Google Scholar 

  • Cobbett C, Goldsbrough P (2002) Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. Annu Rev Plant Biol 53:159–182. doi:10.1146/annurev.arplant.53.100301.135154

    CAS  PubMed  Google Scholar 

  • Conesa HM, Faz A, Arnaldos R (2007) Initial studies for the phytostabilization of a mine tailing from the Cartagena-La Union Mining District (SE Spain). Chemosphere 66:38–44. doi:10.1016/j.chemosphere.2006.05.041

    CAS  PubMed  Google Scholar 

  • Cooper EM, Sims JT, Cunningham SD, Huang JW, Berti WR (1999) Chelate-assisted phytoextraction of lead from contaminated soils. J Environ Qual 28:1709–1719. doi:10.2134/jeq1999.00472425002800060004x

    CAS  Google Scholar 

  • Córdova S, Neaman A, González I, Ginocchio R, Fine P (2011) The effect of lime and compost amendments on the potential for the revegetation of metal-polluted, acidic soils. Geoderma 166:135–144. doi:10.1016/j.geoderma.2011.07.022

    Google Scholar 

  • Cunningham SD, Berti WR (1993) The remediation of contaminated soils with green plants: an overview. In Vitro Cell Dev Biol Plant 29:207–212

    Google Scholar 

  • Czako M, Feng X, He Y, Liang D, Marton L (2006) Transgenic Spartina alterniflora for phytoremediation. Environ Geochem Health 28:103–110. doi:10.1007/s10653-005-9019-8

    CAS  PubMed  Google Scholar 

  • Dai J, Becquer T, Rouiller JH, Reversat G, Bernhard-Reversat F, Lavelle P (2004) Influence of heavy metals on C and N mineralisation and microbial biomass in Zn-, Pb-, Cu-, and Cd-contaminated soils. Appl Soil Ecol 25:99–109. doi:10.1016/j.apsoil.2003.09.003

    Google Scholar 

  • Dalla Vecchia F, La Rocca N, Moro I, De Faveri S, Andreoli C, Rascio N (2005) Morphogenetic, ultrastructural and physiological damages suffered by submerged leaves of Elodea canadensis exposed to cadmium. Plant Sci 168:329–338. doi:10.1016/j.plantsci.2004.07.025

    CAS  Google Scholar 

  • Dastoor AP, Larocque Y (2004) Global circulation of atmospheric mercury: a modelling study. Atmos Environ 38:147–161. doi:10.1016/j.atmosenv.2003.08.037

    CAS  Google Scholar 

  • Dat J, Vandenabeele S, Vranová E, Van Montagu M, Inzé D, Van Breusegem F (2000) Dual action of the active oxygen species during plant stress responses. Cell Mol Life Sci 57:779–795. doi:10.1007/s000180050041

    CAS  PubMed  Google Scholar 

  • Demiral T, Türkan I (2005) Comparative lipid peroxidation, antioxidant defense systems and proline content in roots of two rice cultivars differing in salt tolerance. Environ Exp Bot 53:247–257. doi:10.1016/j.envexpbot.2004.03.017

    CAS  Google Scholar 

  • Dickinson NM, Baker AJM, Doronila A, Laidlaw S, Reeves RD (2009) Phytoremediation of inorganics: realism and synergies. Int J Phytoremediation 11:97–114. doi:10.1080/15226510802378368

    CAS  Google Scholar 

  • Domínguez MT, Marañón T, Murillo JM, Schulin R, Robinson BH (2008) Trace element accumulation in woody plants of the Guadiamar Valley, SW Spain: a large-scale phytomanagement case study. Environ Pollut 152:50–59. doi:10.1016/j.envpol.2007.05.021

    PubMed  Google Scholar 

  • Dräger BD, Desbrosses-Fonrouge AG, Krach C, Chardonnens AN, Rhonda CM, Saumitou-LapradeP KU (2004) Two genes encoding Arabidopsis halleri MTP1 metal transport proteins co-segregate with zinc tolerance and account for high MTP1 transcript levels. Plant J 39:425–439. doi:10.1111/j.1365-313X.2004.02143.x

    PubMed  Google Scholar 

  • Dunne EJ, Culleton N, O’Donovan G, Harrington R, Olsen AE (2005) An integrated constructed wetland to treat contaminants and nutrients from dairy farmyard dirty water. Ecol Eng 24:221–234. doi:10.1016/j.ecoleng.2004.11.010

    Google Scholar 

  • Dushenkov S, Kapulnik Y (2000) Phytofiltration of metals. Phytoremediation of toxic metals: using plants to clean up the environment. In: Raskin I (ed) Phytoremediation of toxic metals using plants to clean up the environment. Wiley, New York

    Google Scholar 

  • Dushenkov V, Kumar PBAN, Motto H, Raskin I (1995) Rhizofiltration: the use of plants to remove heavy metals from aqueous streams. Environ Sci Technol 29:1239–1245. doi:10.1021/es00005a015

    CAS  PubMed  Google Scholar 

  • Ebbs SD, Lasat MM, Brandy DJ, Cornish J, Gordon R, Kochian LV (1997) Heavy metals in the environment: phytoextraction of cadmium and zinc from a contaminated soil. J Environ Qual 26:1424–1430. doi:10.2134/jeq1997.00472425002600050032x

    CAS  Google Scholar 

  • Elliott HA, Brown GA (1989) Comparative evaluation of NTA and EDTA for extractive decontamination of Pb-polluted soils. Water Air Soil Pollut 45:361–369. doi:10.1007/BF00283464

    CAS  Google Scholar 

  • Etim EE (2012) Phytoremediation and its mechanisms: a review. Int J Environ Bioenergy 2(3):120–136.http://modernscientificpress.com/Journals/ViewArticle.aspx. Accessed 31 July 2013

  • Farrell M, Perkins WT, Hobbs PJ, Griffith GW, Jones DL (2009) Migration of heavy metals in soil as influenced by compost amendments. Environ Pollut 158:55–64. doi:10.1016/j.envpol.2009.08.027

    PubMed  Google Scholar 

  • Fischerová Z, Tlusto P, Száková J, Sichorova K (2006) A comparison of phytoremediation capability of selected plant species for given trace elements. Environ Pollut 144:93–100. doi:10.1016/j.envpol.2006.01.005

    PubMed  Google Scholar 

  • Fitter AH, Hay RKM (2002) Environmental physiology of plants. Academic, London

    Google Scholar 

  • Foyer CH, Noctor G (2005) Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. Plant Cell 17:1866–1875. doi:10.1105/tpc.105.033589

    PubMed Central  CAS  PubMed  Google Scholar 

  • Freeman JL, Persans MW, Nieman K, Albrecht C, Peer W, Pickering IJ, Salt DE (2004) Increased glutathione biosynthesis plays a role in nickel tolerance in Thlaspi nickel hyperaccumulators. Plant Cell 16:2176–2191. doi:10.1105/tpc.104.023036

    PubMed Central  CAS  PubMed  Google Scholar 

  • Fulekar M, Singh A, Bhaduri AM (2009) Genetic engineering strategies for enhancing phytoremediation of heavy metals. Afr J Biotechnol 8:529–535. http://www.academicjournals.org/AJB

  • Garbisu C, Alkorta I (2001) Phytoextraction: a cost-effective plant-based technology for the removal of metals from the environment. Review paper. Bioresour Technol 77:229–236. doi:10.1016/S0960-8524(00)00108-5

    CAS  PubMed  Google Scholar 

  • Gekeler W, Grill E, Winnacker EL, Zenk MH (1988) Algae sequester heavy metals via synthesis of phytochelatin complexes. Arch Microbiol 150:197–202. doi:10.1007/BF00425162

    CAS  Google Scholar 

  • Ghosh S (2010) Wetland macrophytes as toxic metal accumulators. Int J Environ Sci 1:523–528

    Google Scholar 

  • Ghosh M, Singh SP (2005) A review on phytoremediation of heavy metals and utilization of it’s by products. Asian J Energy Environ 6(4):214–231. www.asian-energy-journal.info

  • Giri AK, Patel RK (2011) Toxicity and bioaccumulation potential of Cr(VI) and Hg(II) on differential concentration by Eichhornia crassipes in hydroponic culture. Water Sci Technol 63:899–907. doi:10.2166/wst.2011.268

    CAS  PubMed  Google Scholar 

  • González Chávez MCA, Vangronsveld J, Colpaert J, Leyval C (2006) Arbuscular mycorrhizal fungi and heavy metals: tolerance mechanisms and potential use in bioremediation. In: Prasad MNV, Sajwan KS, Naidu R (eds) Trace elements in the environment. Biogeochemistry, biotechnology, and bioremediation. Taylor & Francis, Boca Raton, FL

    Google Scholar 

  • Grandlic CJ, Mendez MO, Chorover J, Machado B, Maier RM (2008) Plant growth-promoting bacteria for phytostabilization of mine tailings. Environ Sci Technol 42(6):2079–2084. doi:10.1021/es072013j

    CAS  PubMed  Google Scholar 

  • Grandlic CJ, Palmer MW, Maier RM (2009) Optimization of plant growth-promoting bacteria-assisted phytostabilization of mine tailings. Soil Biol Biochem 41:1734–1740. doi:10.1016/j.soilbio.2009.05.017

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gray CW, Dunham SJ, Dennis PG, Zhao FJ, McGrath SP (2006) Field evaluation of in situ remediation of a heavy metal contaminated soil using lime and red-mud. Environ Pollut 142:530–539

    CAS  PubMed  Google Scholar 

  • Grill E, Winnacker EL, Zenk MH (1985) Phytochelatins: the principal heavy-metal complexing peptides of plants. Science 230:674–676. doi:10.1126/science.230.4726.674

    CAS  PubMed  Google Scholar 

  • Grill E, Thumann J, Winnacker EL, Zenk MH (1988) Induction of heavy metal binding phytochelatins by inoculation of cell cultures in standard media. Plant Cell Rep 7:375–378. doi:10.1007/BF00269516

    CAS  PubMed  Google Scholar 

  • Guerra F, Gainza F, Pérez R, Zamudio F (2011) Phytoremediation of heavy metals using poplars (Populus Spp): a glimpse of the plant responses to copper, cadmium and zinc stress. In: Golubev IA (ed) Handbook of phytoremediation. Nova Science, New York

    Google Scholar 

  • Gustin JL, Loureiro ME, Kim D, Na G, Tikhonova M, Salt DE (2009) MTP1-dependent Zn sequestration into shoot vacuoles suggests dual roles in Zn tolerance and accumulation in Zn hyperaccumulating plants. Plant J 57:1116–1127. doi:10.1111/j.1365-313X.2008.03754.x

    CAS  PubMed  Google Scholar 

  • Hall JL (2002) Cellular mechanisms for heavy metal detoxification and tolerance. J Exp Bot 53:1–11. doi:10.1093/jexbot/53.366.1

    CAS  PubMed  Google Scholar 

  • Hammond JP, Bowen HC, White PJ, Mills V, Pyke KA, Baker AJ, Whiting SN, May ST, Broadley MR (2006) A comparison of the Thlaspi caerulescens and Thlaspi arvense shoot transcriptomes. New Phytol 170:239–260. doi:10.1111/j.1469-8137.2006.01662.x

    CAS  PubMed  Google Scholar 

  • Heaton ACP, Rugh CL, Kim T, Wang NJ, Meagher RB (2003) Toward detoxifying mercury-polluted aquatic sediments with rice genetically engineered for mercury resistance. Environ Toxicol Chem 22:2940–2947. doi:10.1897/02-442

    CAS  PubMed  Google Scholar 

  • Hegazy AK, Abdel-Ghani NT, El-Chaghaby GA (2011) Phytoremediation of industrial wastewater potentiality by Typha domingensis. Int J Environ Sci Technol 8:639–648

    CAS  Google Scholar 

  • Heldt HW (1997) Plant biochemistry and molecular biology. Oxford University Press, Oxford

    Google Scholar 

  • Hirata K, Tsuji N, Miyamoto K (2005) Biosynthetic regulation of phytochelatins, heavy metal-binding peptides. J Biosci Bioeng 100:593–599. doi:10.1263/jbb.100.593

    CAS  PubMed  Google Scholar 

  • Hooda V (2007) Phytoremediation of toxic metals from soil and waste water. J Environ Biol 28:367–376

    CAS  PubMed  Google Scholar 

  • Hou WH, Chen X, Song GL, Wang QH, Chang CC (2007) Effects of copper and cadmium on heavy metal polluted waterbody restoration by duckweed (Lemnaminor). Plant Physiol Biochem 45:62–69. doi:10.1016/j.plaphy.2006.12.005

    CAS  PubMed  Google Scholar 

  • Huang JW, Chen J, Berti WR, Cunningham SD (1997) Phytoremediation of lead-contaminated soils: role of synthetic chelating in lead phytoextraction. Environ Sci Technol 31:800–805. doi:10.1021/es9604828

    CAS  Google Scholar 

  • Huang JW, Blaylock MJ, Kapulnik Y, Ensley BD (1998) Phytoremediation of uranium-contaminated soils: role of organic acids in triggering uranium hyperaccumulation in plants. Environ Sci Technol 32:2004–2008. doi:10.1021/es971027u

    CAS  Google Scholar 

  • Huang CC, Chen MW, Hsieh JL, Lin WH, Chen PC, Chien LF (2006) Expression of mercuric reductase from Bacillus megaterium MB1 in eukaryotic microalga Chlorella sp. DT: an approach for mercury phytoremediation. Appl Microbiol Biotechnol 72:197–205. doi:10.1007/s00253-005-0250-0

    CAS  PubMed  Google Scholar 

  • Hussein HS, Ruiz ON, Terry N, Daniell H (2007) Phytoremediation of mercury and organomercurials in chloroplast transgenic plants: enhanced root uptake, translocation to shoots, and volatilization. Environ Sci Technol 41:8439–8446. doi:10.1021/es070908q

    PubMed Central  CAS  PubMed  Google Scholar 

  • Interstate Technology and Regulatory Cooperation (ITRC) (2001) Phytotechnology technical and regulatory guidance document. www.itrcweb.org/Documents/PHYTO-2.pdf. Accessed 31 July 2013

  • Jadia CD, Fulekar MH (2009) Phytoremediation of heavy metals: recent techniques. Afr J Biotechnol 8:921–928. http://www.academicjournals.org/AJB

  • Jiang XJ, Luo YM, Zhao QG, Baker AJM, Christie P, Wong MH (2003) Soil Cd availability to Indian mustard and environmental risk following EDTA addition to Cd-contaminated soil. Chemosphere 50:813–818. doi:10.1016/S0045-6535(02)00224-2

    CAS  PubMed  Google Scholar 

  • Kadukova J, Kavuličova J (2011)Phytoremediation of heavy metal contaminated soils – plant stress assessment. In: Golubev IA (ed) Handbook of phytoremediation. Nova Science, New York

    Google Scholar 

  • Kalve S, Sarangi BK, Pandey RA, Chakrabarti T (2011) Arsenic and chromium hyperaccumulation by an ecotype of Pteris vittata-prospective for phytoextraction from contaminated water and soil. Curr Sci 100:888–894

    Google Scholar 

  • Kamal M, Ghaly AE, Mahmoud N, Cote R (2004) Phytoaccumulation of heavy metals by aquatic plants. Environ Int 29:1029–1039

    CAS  PubMed  Google Scholar 

  • Kara Y (2004) Bioaccumulation of copper from contaminated wastewater by using Lemna minor. Bull Environ Contam Toxicol 72:467–471. doi:10.1007/s00128-004-0269-4

    CAS  PubMed  Google Scholar 

  • Karaca A (2004) Effect of organic wastes on the extractability of cadmium, copper, nickel and zinc in soil. Geoderma 122:297–303

    CAS  Google Scholar 

  • Karami N, Clemente R, Moreno-Jiménez E, Lepp NW, Beesley L (2011) Efficiency of green waste compost and biochar soil amendments for reducing lead and copper mobility and uptake to ryegrass. J Hazard Mater 191:41–48

    CAS  PubMed  Google Scholar 

  • Kari FG, Giger W (1995) Modeling the photochemical degradation of ethylenediaminetetraacetate in the river Glatt. Environ Sci Technol 29:2814–2827. doi:10.1021/es00011a018

    CAS  PubMed  Google Scholar 

  • Karimi N, Ghaderian SM, Raab A, Feldmann J, Meharg AA (2009) An arsenic-accumulating, hypertolerant brassica, Isatis cappadocica. New Phytol 184:41–47. doi:10.1111/j.1469-8137.2009.02982.x

    CAS  PubMed  Google Scholar 

  • Karimi N, Ghaderian SM, Maroofi H, Schat H (2010) Analysis of arsenic in soil and vegetation of a contaminated area in Zarshuran, Iran. Int J Phytoremediation 12:159–173. doi:10.1080/15226510903213977

    CAS  PubMed  Google Scholar 

  • Kawahigashi H (2009) Transgenic plants for phytoremediation of herbicides. Curr Opin Biotechnol 20:225–230. doi:10.1016/j.copbio.2009.01.010

    CAS  PubMed  Google Scholar 

  • Kayser A, Wenger K, Keller A, Attinger W, Felix HR, Gupta SK, Schulin R (2000) Enhancement of phytoextraction of Zn, Cd, and Cu from calcareous soil: the use of NTA and sulfur amendments. Environ Sci Technol 34:1778–1783. doi:10.1021/es990697s

    CAS  Google Scholar 

  • Keller C, Diallo S, Cosio C, Basic N, Galland N (2006) Cadmium tolerance and hyperaccumulation by Thlaspi caerulescens populations grown in hydroponics are related to plant uptake characteristics in the field. Funct Plant Biol 33:673–684. doi:10.1071/FP05217

    CAS  Google Scholar 

  • Khan MS, Zaidi A, Wani PA, Oves M (2009) Role of plant growth promoting rhizobacteria in the remediation of metal contaminated soils. Environ Chem Lett 7:1–19. doi:10.1007/s10311-008-0155-0

    Google Scholar 

  • Khellaf N, Zerdaoui M (2009) Phytoaccumulation of zinc by the aquatic plant, Lemna gibba L. Bioresour Technol 100:6137–6140. doi:10.1016/j.biortech.2009.06.043

    CAS  PubMed  Google Scholar 

  • Kidd P, Barceló J, Bernal MP, Navari-Izzo F, Poschenrieder C, Shilev S, Clemente R, Monterroso C (2009) Trace element behaviour at the root–soil interface: implications in phytoremediation. Environ Exp Bot 67:243–259. doi:10.1016/j.envexpbot.2009.06.013

    CAS  Google Scholar 

  • Kim D, Gustin JF, Lahner B, Persans MW, Baek D, Yun DJ, Salt DE (2004) The plant CDF family member TgMTP1 from the Ni/Zn hyperaccumulator Thlaspi goesingense acts to enhance efflux of Zn at the plasma membrane when expressed in Saccharomyces cerevisiae. Plant J 39:237–251. doi:10.1111/j.1365-313X.2004.02126.x

    CAS  PubMed  Google Scholar 

  • Kinnersely AM (1993) The role of phytochelates in plant growth and productivity. Plant Growth Regul 12:207–217. doi:10.1007/BF00027200

    Google Scholar 

  • Kirkham MB (2006) Cadmium in plants on polluted soils: effects of soil factors, hyperaccumulation, and amendments. Geoderma 137:19–32. doi:10.1016/j.geoderma.2006.08.024

    CAS  Google Scholar 

  • Knight H, Knight MR (2001) Abiotic stress signalling pathways: specificity and cross-talk. Trends Plant Sci 6:262–267

    CAS  PubMed  Google Scholar 

  • Kos B, Leštan D (2003) Influence of a biodegradable ([S, S]- EDDS) and non-degradable (EDTA) chelate and hydrogen modified soil water sorption capacity on Pb phytoextraction and leaching. Plant Soil 253:403–411. doi:10.1023/A:1024861725626

    CAS  Google Scholar 

  • Kos B, Leštan D (2004) Chelator induced phytoextraction and in situ soil washing of Cu. Environ Pollut 132:333–339. doi:10.1016/j.envpol.2004.04.004

    CAS  PubMed  Google Scholar 

  • Krämer U (2010) Metal hyperaccumulation in plants. Annu Rev Plant Biol 61:517–534. doi:10.1146/annurev-arplant-042809-1121567

    PubMed  Google Scholar 

  • Krämer U, Pickering IJ, Prince RC, Raskin I, Salt DE (2000) Subcellular localization and speciation of Ni in hyperaccumulator and non-accumulator Thlaspi species. Plant Physiol 122:1343–1353. doi:10.1104/pp.122.4.1343

    PubMed Central  PubMed  Google Scholar 

  • Kumpiene J, Lagerkvist A, Maurice C (2008) Stabilization of As, Cr, Cu, Pb and Zn in soil using amendments – a review. Waste Manag 28:215–225. doi:10.1016/j.wasman.2006.12.012

    CAS  PubMed  Google Scholar 

  • Lasat MM (2000) Phytoextraction of metals from contaminated soil: a review of plant/soil/metal interaction and assessment of pertinent agronomic issues. J Hazard Subst Res 2:5–25

    Google Scholar 

  • Lasat MM (2002) Phytoextraction of toxic metals: a review of biological mechanisms. J Environ Qual 31:109–120. doi:10.2134/jeq2002.1090

    CAS  PubMed  Google Scholar 

  • Lee M, Yang M (2010) Rhizofiltration using sunflower (Helianthus annuus L.) and bean (Phaseolusvulgaris L. var. vulgaris) to remediate uranium contaminated groundwater. J Hazard Mater 173:589–596. doi:10.1016/j.jhazmat.2009.08.127

    CAS  PubMed  Google Scholar 

  • Leonard TL, Taylor GE Jr, Gustin MS, Fernandez GCJ (1998) Mercury and plants in contaminated soils: 1. Uptake, partitioning, and emission to the atmosphere. Environ Toxicol Chem 17:2063–2071. doi:10.1002/etc.5620171024

    CAS  Google Scholar 

  • Lesage E, Mundia C, Rousseau DPL, Van de Moortel AMK, Du Laing G, Meers E, Tack FMG, De Pauw N, Verloo MG (2007) Sorption of Co, Cu, Ni and Zn from industrial effluents by the submerged aquatic macrophyte Myriophyllum spicatum L. Ecol Eng 30:320–325. doi:10.1016/j.ecoleng.2007.04.007

    Google Scholar 

  • Leštan D, Luo CL, Li XD (2008) The use of chelating agents in the remediation of metal-contaminated soils: a review. Environ Pollut 153:3–13. doi:10.1016/j.envpol.2007.11.015

    PubMed  Google Scholar 

  • Liebert CA, Watson AL, Summers AO (2000) The quality of merC, a module of the Mer mosaic. J Mol Evol 51:607–622. doi:10.1007/s002390010124

    CAS  PubMed  Google Scholar 

  • Lim JM, Salido AL, Butcher DJ (2004) Phytoremediation of lead using Indian mustard (Brassica juncea) with EDTA and electrodics. Microchem J 76:3–9. doi:10.1016/j.microc.2003.10.002

    CAS  Google Scholar 

  • Liu YJ, Mub YJ, Zhub YG, Dinga H, Arens NC (2007) Which ornamental plant species effectively remove benzene from indoor air? Atmos Environ 41:650–654. doi:10.1016/j.atmosenv.2006.08.001

    CAS  Google Scholar 

  • Liu YJ, Liu QJ, Ding H (2011) Reviews on soil pollution, risks, sources and phytoremediation involving metal contaminants. In: Golubev IA (ed) Handbook of phytoremediation. Nova Science, New York

    Google Scholar 

  • Lorestani B, Cheraghi M, Yousefi N (2012) The potential of phytoremediation using hyperaccumulator plants: a case study at a lead-zinc mine site. Int J Phytoremediation 14:786–795. doi:10.1080/15226514.2011.619594

    CAS  PubMed  Google Scholar 

  • Lothenbach B, Furrer G, Scharli H, Schulin R (1999) Immobilization of zinc and cadmium by montmorillonite compounds: effects of aging and subsequent acidification. Environ Sci Technol 33:2945–2952. doi:10.1021/es981317q

    CAS  Google Scholar 

  • Lu Q, He ZL, Graetz DA, Stoffella PJ, Yang X (2011) Uptake and distribution of metals by water lettuce (Pistia stratiotes L.). Environ Sci Pollut R 18:978–986. doi:10.1007/s11356-011-0453-0

    CAS  Google Scholar 

  • Luo C, Shen Z, Li X (2005) Enhanced phytoextraction of Cu, Pb, Zn and Cd with EDTA and EDDS. Chemosphere 59:1–11. doi:10.1016/j.chemosphere.2004.09.100

    CAS  PubMed  Google Scholar 

  • Ma LQ, Komar KM, Tu C, Zhang WH, Cai Y, Kennelley ED (2001) A fern that hyperaccumulates arsenic: a hardy, versatile, fast-growing plant helps to remove arsenic from contaminated soils. Nature 409:579–579. doi:10.1038/35054664

    CAS  PubMed  Google Scholar 

  • Madejón E, Madejón P, Burgos P, Mora AP, Cabrera F (2008) Trace elements, pH and organic matter evolution in contaminated soils under assisted natural remediation: a 4-year field study. J Hazard Mater 162:931–938. doi:10.1016/j.jhazmat.2008.05.119

    PubMed  Google Scholar 

  • Maegher R (2000) Phytoremediation of toxic elemental and organic pollutants. Curr Opin Plant Biol 3:153–162. doi:10.1016/S1369-5266(99)00054-0

    Google Scholar 

  • Maestri E, Marmiroli N (2011) Transgenic plants for phytoremediation. Int J Phytoremediation 13:264–279. doi:10.1080/15226514.2011.568549

    PubMed  Google Scholar 

  • Maestri E, Marmiroli M, Visioli G, Marmiroli N (2010) Metal tolerance and hyperaccumulation: costs and trade-offs between traits and environment. Environ Exp Bot 68:1–13. doi:10.1016/j.envexpbot.2009.10.011

    CAS  Google Scholar 

  • Marchiol L, Fellet G, Pošćić F, Zerbi G (2011) A decade of research on phytoremediation in North-east Italy: lessons learned and future directions. In: Golubev IA (ed) Handbook of phytoremediation. Nova, New York

    Google Scholar 

  • Marques APGC, Rangel AOSS, Castro PML (2009) Remediation of heavy metal contaminated soils: phytoremediation as a potentially promising clean-up technology. Crit Rev Environ Sci Technol 39:622–654. doi:10.1080/10643380701798272

    CAS  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants. Academic, Cambridge

    Google Scholar 

  • McCutcheon SC, Schnoor JL (2003) Phytoremediation. Transformation and control of contaminants. Wiley Interscience, Hoboken, NJ

    Google Scholar 

  • McGrath SP, Zhao FJ (2003) Phytoextraction of metals and metalloids from contaminated soils. Curr Opin Biotechnol 14:277–282. doi:10.1016/S0958-1669(03)00060-0

    CAS  PubMed  Google Scholar 

  • McGrath SP, Zhao FJ, Lombi E (2002) Phytoremediation of metals, metalloids, and radionuclides. Adv Agron 75:1–56. doi:10.1016/S0065-2113(02)75002-5

    CAS  Google Scholar 

  • Meers E, Vandecasteele B, Ruttens A, Vangronsveld J, Tack FMG (2007) Potential of five willow species (Salix spp.) for phytoextraction of heavy metals. Environ Exp Bot 60:57–68. doi:10.1016/j.envexpbot.2006.06.008

    CAS  Google Scholar 

  • Mehta P (2005) Evaluating the potential of alder-Frankia symbionts for the remediation and revegetation of oil sands tailings. Masters Abstr Int 45:99

    Google Scholar 

  • Mench M, Vangronsveld J, Didier V, Clijsters H (1994) Evaluation of metal mobility, plant availability and immobilization by chemical agents in a limed-silty soil. Environ Pollut 86:279–286. doi:10.1016/0269-7491(94)90168-6

    CAS  PubMed  Google Scholar 

  • Mench M, Lepp N, Bert V, Schwitzguébel JP, Gawronski SW, Schröder P, Vangronsveld J (2010) Successes and limitations of phytotechnologies at field scale: outcome, assessment and outlook from COST Action 859. J Soil Sedim 10:1039–1070. doi:10.1007/s11368-010-0190-x

    CAS  Google Scholar 

  • Mertens J, Vervaeke P, Schrijver AD, Luyssaert S (2004) Metal uptake by young trees from dredged brackish sediment: limitations and possibilities for phytoextraction and phytostabilisation. Sci Total Environ 326:209–215. doi:10.1016/j.scitotenv.2003.12.010

    CAS  PubMed  Google Scholar 

  • Milic D, Lukovic J, Ninkov J, Zeremski-Skoric T, Zoric L, Vasin J, Milic S (2012) Heavy metal content in halophytic plants from inland and maritime saline areas. Cent Eur J Biol 7:307–317. doi:10.2478/s11535-012-0015-6

    CAS  Google Scholar 

  • Miller RR (1996) Phytoremediation, technology overview report. Ground-Water Remediation Technologies Analysis Center. http://www.hawaii.edu/abrp/Technologies/phystab.html. Accessed 31 July 2013

  • Milner MJ, Kochian LV (2008) Investigating heavy-metal hyperaccumulation using Thlaspi caerulescens as a model system. Ann Bot 102:3–13. doi:10.1093/aob/mcn063

    PubMed Central  CAS  PubMed  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410. doi:10.1016/S1360-1385(02)02312-9

    CAS  PubMed  Google Scholar 

  • Modaihsh A, Al-Swailem M, Mahjoub M (2004) Heavy metal contents of commercial inorganic fertilizer used in the Kingdom of Saudi Arabia. Agric Mar Sci 9:21–25. http://hdl.handle.net/123456789/2334

  • Møller IM (2001) Plant mitochondria and oxidative stress: electron transport, NADPH turnover, and metabolism of reactive oxygen species. Annu Rev Plant Physiol 52:561–591

    Google Scholar 

  • Morby AP, Hobman JL, Brown NL (1995) The role of cysteine residues in the transport of mercuric ions by the Tn501 MerT and MerP mercury-resistance proteins. Mol Microbiol 17:25–35. doi:10.1111/j.1365-2958

    CAS  PubMed  Google Scholar 

  • Morel JL (1997) Bioavailability of trace elements to terrestrial plants. In: Tarradellas J, Bitton G, Rossel D (eds) Soil ecotoxicology. Lewis, Boca Raton, FL

    Google Scholar 

  • Moreno FN, Anderson CWN, Stewart RB, Robinson BH (2008) Phytofiltration of mercury-contaminated water: volatilisation and plant-accumulation aspects. Environ Exp Bot 62:78–85. doi:10.1016/j.envexpbot.2007.07.007

    CAS  Google Scholar 

  • Nabais C, Gonçalves SC, Freitas H (2007) Phytoremediation in Portugal: present and future. In: Willey N (ed) Phytoremediation. Methods and reviews. Humana, Clifton, NJ

    Google Scholar 

  • Narwal RP, Singh BR (1998) Effect of organic materials on partitioning, extractability and plant uptake of metals in an alum shale soil. Water Air Soil Pollut 103:405–421. doi:10.1023/A:1004912724284

    CAS  Google Scholar 

  • Navari-Izzo F, Quartacci MF (2001) Phytoremediation of metals: tolerance mechanisms against oxidative stress. Minerva Biotechnol 13:23–83

    Google Scholar 

  • Navari-Izzo F, Quartacci MF, Pinzino C, Dalla Vecchia F, Sgherri C (1998) Thylakoid-bound and stromal antioxidative enzymes in wheat treated with excess of copper. Physiol Plant 104:630–638. doi:10.1034/j.1399-3054.1998.1040416.x

    CAS  Google Scholar 

  • Navari-Izzo F, Pinzino C, Quartacci MF, Sgherri C (1999) Superoxide and hydroxyl radical generation, and superoxide dismutase in PSII membrane fragments from wheat. Free Radic Res 31:S3–9. doi:10.1080/10715769900301251

    CAS  PubMed  Google Scholar 

  • Nedjimi B, Daoud Y (2009) Cadmium accumulation in Atriplex halimus subsp. schweinfurthii and its influence on growth, proline, root hydraulic conductivity and nutrient uptake. Flora 204:316–324. doi:10.1016/j.flora.2008.03.004

    Google Scholar 

  • Neil S, Desikan R, Hancock J (2002) Hydrogen peroxide signalling. Curr Opin Plant Biol 5:388–395. doi:10.1016/S1369-5266(02)00282-0

    Google Scholar 

  • Newman JM, Clausen JC, Neafsey JA (2000) Seasonal performance of a wetland constructed to process dairy milkhouse wastewater in Connecticut. Ecol Eng 14:181–198. doi:10.1016/S0925-8574(99)00028-2

    Google Scholar 

  • Nguyen THH, Sakakibara M, Sano S, Nhuan MT (2011) Uptake of metals and metalloids by plants growing in a Lead–Zinc mine area, Northern Vietnam. J Hazard Mater 186:1384–1391. doi:10.1016/j.jhazmat.2010.12.020

    CAS  PubMed  Google Scholar 

  • Nigam R, Srivatava S, Prakash S, Srivastava MM (2001) Cadmium mobilisation and plant availability: the impact of organic acids commonly exuded from roots. Plant Soil 230:107–113. doi:10.1023/A:1004865811529

    CAS  Google Scholar 

  • Nowack B, VanBriesen JM (2005) Chelating agents in the environment. In: VanBriesen JM, Nowack B (eds) Biogeochemistry of chelating agents. American Chemical Society, Washington, DC

    Google Scholar 

  • Nwachukwu OI, Pulford ID (2008) Comparative effectiveness of selected adsorbant materials as potential amendments for the remediation of lead-, copper- and zinc- contaminated soil. Soil Use Manage 24:199–207. doi:10.1111/j.1475-2743.2007.00141.x

    Google Scholar 

  • Olguín EJ, Sánchez-Galván G (2010) Aquatic phytoremediation: novel insights in tropical and subtropical regions. Pure Appl Chem 82:27–38. doi:10.1351/PAC-CON-09-02-13

    Google Scholar 

  • Olguín EJ, Sánchez-Galván G (2012) Heavy metal removal in phytofiltration and phycoremediation: the need to differentiate between bioadsorption and bioaccumulation. New Biotechnol 30:3–8. doi:10.1016/j.nbt.2012.05.020

    Google Scholar 

  • Orcutt DM, Nilsen ET (2000) The physiology of plants under stress. Soil and biotic factors. Wiley, Hoboken, NJ

    Google Scholar 

  • Ouyang Y (2002) Phytoremediation: modelling plant uptake and contaminant transport in the soil-plant-atmosphere continuum. J Hydrol 266:66–82. doi:10.1016/S0022-1694(02)00116-6

    CAS  Google Scholar 

  • Ownby DR, Galvan KA, Lydy MJ (2005) Lead and zinc bioavailability to Eisenia fetida after phosphorus amendment to repository soils. Environ Pollut 136:315–321. doi:10.1016/j.envpol.2004.12.033

    CAS  PubMed  Google Scholar 

  • Pagliano C, Raviolo M, DallaVecchia F, Gabbrielli R, Gonnelli C, Rascio N, Barbato R, La Rocca N (2006) Evidence for PSII-donor-side damage and photoinhibition induced by cadmium treatment on rice (Oryza sativa L.). J Photochem Photobiol B Biol 84:70–78. doi:10.1016/j.jphotobiol.2006.01.012

    CAS  Google Scholar 

  • Park JH, Lamb D, Paneerselvam P, Choppala G, Bolan N, Chung JW (2011) Role of organic amendments on enhanced bioremediation of heavy metal(loid) contaminated soils. J Hazard Mater 185:549–574. doi:10.1016/j.jhazmat.2010.09.082

    CAS  PubMed  Google Scholar 

  • Paulose B, Datta SP, Rattan RK, Chhonkar PK (2007) Effect of amendments on the extractability, retention and plant uptake of metals on a sewage-irrigated soil. Environ Pollut 146:19–24. doi:10.1016/j.envpol.2006.06.016

    CAS  PubMed  Google Scholar 

  • Pei ZM, Murata Y, Benning G, Thomine S, Klüsener B, Allen GJ, Grill E, Schroeder JI (2000) Calcium channels activated by hydrogen peroxide mediate abscisic acid signaling in guard cells. Nature 406:731–734. doi:10.1038/35021067

    CAS  PubMed  Google Scholar 

  • Pendias AK (2001) Trace elements in soils and plants. CRC, New York

    Google Scholar 

  • Pérez-de-Mora E, Burgos MP, Cabrera F (2006) Trace element availability and plant growth in a mine-spill contaminated soil under assisted natural remediation I, Soils. Sci Total Environ 363:28–37. doi:10.1016/j.scitotenv.2005.10.015

    PubMed  Google Scholar 

  • Persans MW, Nieman K, Salt DE (2001) Functional activity and role of cation efflux family members in Ni hyperaccumulation in Thlaspi goesingense. Proc Natl Acad Sci USA 98:9995–10000. doi:10.1073/pnas.171039798

    PubMed Central  CAS  PubMed  Google Scholar 

  • Piechalak A, Tomaszewska B, Baralkiewicz D, Malecka A (2002) Accumulation and detoxification of lead ions in legumes. Phytochemistry 60:153–162. doi:10.1016/S0031-9422(02)00067-5

    CAS  PubMed  Google Scholar 

  • Pilon-Smits E (2005) Phytoremediation. Annu Rev Plant Biol 56:15–39. doi:10.1146/annurev.arplant.56.032604.144214

    CAS  PubMed  Google Scholar 

  • Pilon-Smits EAH, LeDuc DL (2009) Phytoremediation of selenium using transgenic plants. Curr Opin Biotechnol 20:207–212. doi:10.1016/j.copbio.2009.02.001

    CAS  PubMed  Google Scholar 

  • Pinto AP, Alves AS, Candeias AJ, Cardoso AI, Varennes A, Martins LL, Mourato MP, Gonçalves ML, Mota AM (2009) Cadmium accumulation and antioxidative defences in Brassica juncea L. Czern, Nicotiana tabacum L. and Solanum nigrum L. Int J Environ Anal Chem 89:661–676

    CAS  Google Scholar 

  • Pitzschke A, Hirt H (2006) Mitogen-activated protein kinases and reactive oxygen species signaling in plants. Plant Physiol 141:351–356. doi:10.1104/pp.106.079160

    PubMed Central  CAS  PubMed  Google Scholar 

  • Prasad MNV (2006) “Metallomics” — a multidisciplinary metal-assisted functional biogeochemistry: scope and limitations. In: Prasad MNV, Sajwan KS, Naidu R (eds) Trace elements in the environment. Biogeochemistry, biotechnology, and bioremediation. Taylor & Francis, Boca Raton, FL

    Google Scholar 

  • Prasad MNV, Freitas H (2003) Metal hyperaccumulation in plants and biodiversity prospecting for phytoremediation technology. Electron J Biotechnol 6:275–321. On-line Version ISSN 0717-3458

    Google Scholar 

  • Prasad MNV, Pratas J, Freitas H (2006) Trace elements in plants and soils of abandoned mines in Portugal: significance for phytomanagement and biogeochemical prospecting. In: Prasad MNV, Sajwan KS, Naidu R (eds) Trace elements in the environment. Biogeochemistry, biotechnology, and bioremediation. Taylor & Francis, Boca Raton, FL

    Google Scholar 

  • Pulford ID, Watson C (2003) Phytoremediation of heavy metal-contaminated land by trees: a review. Environ Int 29:529–540. doi:10.1016/S0160-4120(02)00152-6

    CAS  PubMed  Google Scholar 

  • Qu G, Varennes A (2010) Use of hydrophilic polymers from diapers to aid the establishment of Spergularia purpurea in a mine soil. J Hazard Mater 178:956–962. doi:10.1016/j.jhazmat.2010.02.031

    CAS  PubMed  Google Scholar 

  • Qu G, Varennes A, Martins LL, Mourato MP, Cardoso AI, Mota AM, Pinto AP, Gonçalves ML (2010) Improvement in soil and sorghum health following the application of polyacrylate polymers to a Cd-contaminated soil. J Hazard Mater 173:570–575. doi:10.1016/j.jhazmat.2009.08.124

    Google Scholar 

  • Rafati M, Khorasani N, Moattar F, Shirvany A, Moraghebi F, Hosseinzadeh S (2011) Phytoremediation potential of Populus alba and Morus alba for cadmium, chromium and nickel absorption from polluted soil. Int J Environ Res 5:961–970. ISSN:1735-6865

    Google Scholar 

  • Rahman MA, Hasegawa H (2011) Aquatic arsenic: phytoremediation using floating macrophytes. Chemosphere 83:633–646. doi:10.1016/j.chemosphere.2011.02.045

    CAS  PubMed  Google Scholar 

  • Rahman IMM, Hossain MM, Begum ZA, Rahman MA, Hasegawa H (2011a) Eco-environmental consequences associated with chelant-assisted phytoremediation of metal-contaminated soil. In: Golubev IA (ed) Handbook of phytoremediation. Nova, New York

    Google Scholar 

  • Rahman MA, Rahman MM, Rahman IMM, Hasegawa H (2011b) Arsenic in the environment: phytoremediation using aquatic macrophytes. In: Golubev IA (ed) Handbook of phytoremediation. Nova Science, New York

    Google Scholar 

  • Rascio N, Navari-Izzo F (2011) Heavy metal hyperaccumulating plants: how and why do they do it? And what makes them so interesting? Plant Sci 180:169–181. doi:10.1016/j.plantsci.2010.08.016

    CAS  PubMed  Google Scholar 

  • Rascio N, Dalla Vecchia F, La Rocca N, Barbato R, Pagliano C, Raviolo M, Gonnelli C, Gabbrielli R (2008) Metal accumulation and damage in rice (c.v. Vialone nano) seedlings exposed to cadmium. Environ Exp Bot 62:267–278. doi:10.1016/j.envexpbot.2007.09.002

    CAS  Google Scholar 

  • Raskin I, Ensley BD (2000) Phytoremediation of toxic metals. Wiley, New York

    Google Scholar 

  • Raskin I, Kumar PBAN, Dushenkov S, Salt DE (1994) Bioconcentration of heavy metals by plants. Curr Opin Biotechnol 5:285–290. doi:10.1016/0958-1669(94)90030-2

    CAS  Google Scholar 

  • Raskin I, Smith RD, Salt DE (1997) Phytoremediation of metals: using plants to remove pollutants from the environment. Curr Opin Biotechnol 8:221–226. doi:10.1016/S0958-1669(97)80106-1

    CAS  PubMed  Google Scholar 

  • Reeves RD, Baker AJM (2000) Metal-accumulating plants. In: Raskin I, Ensley BD (eds) Phytoremediation of toxic metals: using plants to clean up the environment. Wiley, Hoboken, NJ

    Google Scholar 

  • Rhoads DM, Umbach ALC, Subbaiah CC, James N, Siedow JN (2006) Mitochondrial reactive oxygen species. Contribution to oxidative stress and interorganellar signaling. Plant Physiol 141:357–366. doi:10.1104/pp.106.079129

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rios-Gonzalez K, Erdei L, Lips SH (2002) The activity of antioxidant enzymes in maize and sunflower seedlings as affected by salinity and different nitrogen sources. Plant Sci 162:923–930. doi:10.1016/S0168-9452(02)00040-7

    CAS  Google Scholar 

  • Rizzi L, Petruzzelli G, Poggio G, Guidi GV (2004) Soil physical changes and plant availability of Zn and Pb in a treatability test of phytostabilization. Chemosphere 57:1039–1046. doi:10.1016/j.chemosphere.2004.08.048

    CAS  PubMed  Google Scholar 

  • Robinson BH, Leblanc M, Petit D, Brooks RR, Kirkman JH, Gregg PEH (1998) The potential of Thlaspi caerulescens for phytoremediation of contaminated soils. Plant Soil 203:47–56. doi:10.1023/A:1004328816645

    CAS  Google Scholar 

  • Robinson BH, Kim N, Marchetti M, Moni C, Schroeter L, van den Dijssel C, Milne G, Clothier B (2006) Arsenic hyperaccumulation by aquatic macrophytes in the Taupo Volcanic Zone, New Zealand. Environ Exp Bot 58:206–215. doi:10.1016/j.envexpbot.2005.08.004

    CAS  Google Scholar 

  • Rodrígez-López JN, Espín JC, del Amor F, Tudela J, Martínez V, Cerdá A, García-Cánovas F (2000) Purification and kinetic characterization of an anionic peroxidase from melon (Cucumis melo L.) cultivated under different salinity conditions. J Agric Food Chem 48:537–1541

    Google Scholar 

  • Rugh CL, Wilde HD, Stack NM, Thompson DM, Summers AO, Meagher RB (1996) Mercuric ion reduction and resistance in transgenic Arabidopsis thaliana plants expressing a modified bacterial MerA gene. Proc Natl Acad Sci USA 93:3182–3187. doi:10.1073/pnas.93.08.3182

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rugh CL, Senecoff JF, Meagher RB, Merkle SA (1998) Development of transgenic yellow poplar for mercury phytoremediation. Nat Biotechnol 16:925–928. doi:10.1038/nbt1098-925

    CAS  PubMed  Google Scholar 

  • Ruiz ON, Daniell H (2009) Genetic engineering to enhance mercury phytoremediation. Curr Opin Chem Biol 20:213–219. doi:10.1016/j.copbio.2009.02.010

    CAS  Google Scholar 

  • Ruttens A, Mench M, Colpaert JV, Boisson J, Carleer R, Vangronsveld J (2006) Phytostabilization of a metal contaminated sandy soil, I: Influence of compost and/or inorganic metal immobilizing soil amendments on phytotoxicity and plant availability of metals. Environ Pollut 144:524–532. doi:10.1016/j.envpol.2006.01.038

    CAS  PubMed  Google Scholar 

  • Sabiha-Javied, Mehmood T, Tufai M, Irfan N (2009) Heavy metal pollution from phosphate rock used for the production of fertilizer in Pakistan. Microchem J 91:94–99. doi:10.1016/j.microc.2008.08.009

    CAS  Google Scholar 

  • Sagner S, Kneer R, Wanner G, Cosson JP, Deus-Neumann B, Zenk MZ (1998) Hyperaccumulation, complexation and distribution of nickel in Sebestia acuminate. Phytochemistry 47:339–347. doi:10.1016/S0031-9422(97)00593-1

    CAS  PubMed  Google Scholar 

  • Saier MH, Trevors JT (2010) Phytoremediation. Water Air Soil Pollut 205:61–63. doi:10.1007/s11270-008-9673-4

    CAS  Google Scholar 

  • Salt DE, Rauser WE (1995) MgATP-dependent transport of phytochelatins across the tonoplast of oat roots. Plant Physiol 107:1293–1301. doi:10.1104/pp.107.4.1293

    PubMed Central  CAS  PubMed  Google Scholar 

  • Salt DE, Blaylock M, Kumar NPBA, Dushenkov V, Ensley BD, Chet I, Raskin I (1995) Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants. Biotechnology 13:468–474. doi:10.1038/nbt0595-468

    CAS  PubMed  Google Scholar 

  • Sánchez-Galván G, Monroy O, Gómez J, Olguín EJ (2008) Assessment of the hyperaccumulating lead capacity of Salvinia minima using bioadsorption and intracellular accumulation factors. Water Air Soil Pollut 194:77–90. doi:10.1007/s11270-008-9700-5

    Google Scholar 

  • Santibáñez C, Verdugo C, Ginocchio R (2008) Phytostabilization of copper mine tailings with biosolids: implications for metal uptake and productivity of Lolium perenne. Sci Total Environ 395:1–10. doi:10.1016/j.scitotenv.2007.12.033

    PubMed  Google Scholar 

  • Santos ES, Abreu MM, Varennes A, Macías F, Leitão S, Cerejeira MJ (2013) Evaluation of chemical parameters and ecotoxicity of a soil developed on gossan following application of polyacrylates and growth of Spergularia purpurea. Sci Total Environ 461–462:360–370. doi:10.1016/j.scitotenv.2013.05.003

    PubMed  Google Scholar 

  • Sarma H (2011) Metal hyperaccumulation in plants: a review focusing on phytoremediation technology. J Environ Sci Technol 4:118–138. doi:10.3923/jest2011.118.138

    CAS  Google Scholar 

  • Sasaki Y, Hayakawa T, Inoue C, Miyazaki A, Silver S, Kusano T (2006) Generation of mercury-hyperaccumulating plants through transgenic expression of the bacterial mercury membrane transport protein MerC. Transgenic Res 15:615–625. doi:10.1007/s11248-006-9008-4

    CAS  PubMed  Google Scholar 

  • Schmidt U (2003) Enhancing phytoextraction: the effect of chemical soil manipulation on mobility, plant accumulation and leaching of heavy metals. J Environ Qual 32:1939–1954. doi:10.2134/jeq2003.1939

    CAS  PubMed  Google Scholar 

  • Schwarzenbach RP, Egli T, Hofstetter TB, von Gunten U, Wehrli B (2010) Global water pollution and human health. Annu Rev Environ Resour 35:109–136. doi:10.1146/annurev-environ-100809-125342

    Google Scholar 

  • Schwitzguébel JP (2002) Hype or hope: the potential of phytoremediation as an emerging green technology. Fed Fac Environ J 13:109–125. doi:10.1002/ffej.10028

    Google Scholar 

  • Schwitzguébel JP, Kumpiene J, Comino E, Vanek T (2009) From green to clean: a promising approach towards environmental remediation and human health for the 21st century. Agrochimica 4:209–237

    Google Scholar 

  • Sekara A, Poniedzialeek M, Ciura J, Jedrszczyk E (2005) Cadmium and lead accumulation and distribution in the organs of nine crops: implications for phytoremediation. Pol J Environ Stud 14:509–516

    CAS  Google Scholar 

  • Selin NE (2009) Global biogeochemical cycling of mercury: a review. Annu Rev Environ Resour 34:43–63. doi:10.1146/annurev.environ.051308.084314

    Google Scholar 

  • Seth CS (2011) A review on mechanisms of plant tolerance and role of transgenic plants in environmental clean-up. Bot Rev. doi:10.1007/s12229-011-9092-x

    Google Scholar 

  • Sgherri C, Cosi E, Navari-Izzo F (2003) Phenols and antioxidative status of Raphanus sativus grown in copper excess. Physiol Plant 118:21–28. doi:10.1034/j.1399-3054.2003.00068.x

    CAS  PubMed  Google Scholar 

  • Shah FUR, Ahmad N, Masood KR, Peralta-Videa JR, Ahmad FUD (2010) Heavy metal toxicity in plants. In: Ashraf M, Ozturk M, Ahmad MSA (eds) Plant adaptation and phytoremediation. Springer, New York

    Google Scholar 

  • Shahandeh H, Hossner LR (2000) Plant screening for chromium phytoremediation. Int J Phytoremediation 2:31–51. doi:10.1080/15226510008500029

    CAS  Google Scholar 

  • Shao HB, Chu LY, Lu ZH, Kang CM (2008) Primary antioxidant free radical scavenging and redox signaling pathways in higher plant cells. Int J Biol Sci 4:8–14. PMCID: PMC2140154

    Google Scholar 

  • Sharma SS, Dietz KJ (2009) The relationship between metal toxicity and cellular redox imbalance. Trends Plant Sci 14:43–50. doi:10.1016/j.tplants.2008.10.007

    CAS  PubMed  Google Scholar 

  • Shen ZG, Li XD, Wang CC, Chen HM, Chua H (2002) Lead phytoextraction from contaminated soil with high-biomass plant species. J Environ Qual 31:1893–1900. doi:10.2134/jeq2002.1893

    CAS  PubMed  Google Scholar 

  • Sheppard SC, Gaudet C, Sheppard MI, Cureton PM, Wong MP (1992) The development of assessment and remediation guidelines for contaminated soils, a review of the science. Can J Soil Sci 72:359–394. doi:10.4141/cjss92-032

    CAS  Google Scholar 

  • Singh A, Prasad SM (2011) Reduction of heavy metal load in food chain: technology assessment. Rev Environ Sci Biotechnol 10:199–214. doi:10.1007/s11157-011-9241-z

    CAS  Google Scholar 

  • Sun R, Zhou Q, Jin C (2006) Cadmium accumulation in relation to organic acids in leaves of Solanum nigrum L. as a newly found cadmium hyperaccumulator. Plant Soil 285:125–134. doi:10.1007/s11104-006-0064-6

    CAS  Google Scholar 

  • Sun Q, Ye ZH, Wang XR, Wong MH (2007) Cadmium hyperaccumulation leads to an increase of glutathione rather than phytochelatins in the cadmium hyperaccumulator Sedum alfredii. J Plant Physiol 164:1489–1498. doi:10.1016/j.jplph.2006.10.001

    CAS  PubMed  Google Scholar 

  • Sundberg-Jones SE, Hassan SM (2007) Macrophyte sorption and bioconcentration of elements in a pilot constructed wetland for flue gas desulfurization wastewater treatment. Water Air Soil Pollut 183:187–200. doi:10.1007/s11270-007-9368-2

    CAS  Google Scholar 

  • Tangahu BV, Abdullah SRS, Basri H, Idris M, Anuar N, Mukhlisin M (2011) Review on heavy metals (As, Pb, and Hg) uptake by plants through phytoremediation. Int J Chem Eng. doi:10.1155/2011/939161

    Google Scholar 

  • Terry N, Gary BG (2000) Phytoremediation of contaminated soil and water. CRC, Boca Raton, FL

    Google Scholar 

  • Terry N, Carlson C, Raab TK, Zayed A (1992) Rates of selenium volatilization among crop species. J Environ Qual 21:341–344

    CAS  Google Scholar 

  • Tlustoš P, Szakova J, Hrubỳ J, Hartman I, Najmanova J, Nedělnik J, Pavlikova D, Batysta M (2006) Removal of As, Cd, Pb, and Zn from contaminated soil by high biomass producing plants. Plant Soil Environ 52:413–423

    Google Scholar 

  • USEPA (2001) Best management practices for lead at outdoor shooting ranges. EPA- 902-B01-001. USEPA, Washington, DC

    Google Scholar 

  • Vamerali T, Bandiera M, Mosca G (2010) Field crops for phytoremediation of metal-contaminated land. A review. Environ Chem Lett 8:1–17. doi:10.1007/s10311-009-0268-0

    CAS  Google Scholar 

  • Van Nevel L, Mertens J, Oorts K, Verheyen K (2007) Phytoextraction of metals from soils: how far from practice? Environ Pollut 150:34–40. doi:10.1016/j.envpol.2007.05.024

    PubMed  Google Scholar 

  • Van Nevel L, Mertens J, Staelens J, De Schrijver A, Tack FMG, De Neve S, Meers E, Verheyen K (2011) Elevated Cd and Zn uptake by aspen limits the phytostabilization potential compared to five other tree species. Ecol Eng 37:1072–1080. doi:10.1016/j.ecoleng.2010.07.010

    Google Scholar 

  • Varennes A, Qu G, Cordovil C, Gonçalves P (2011) Soil quality indicators response to application of hydrophilic polymers to a soil from a sulfide mine. J Hazard Mater 192:1836–1841. doi:10.1016/j.jhazmat.2011.07.020

    PubMed  Google Scholar 

  • Vatamaniuk JOK, Mari S, Lu YP, Rea PA (2000) Mechanism of heavy metal ion activation of phytochelatin PC synthase blocked thiols are sufficient for PC synthase-catalyzed transpeptidation of glutathione and related thiol peptides. J Biol Chem 275:31451–31459. doi:10.1074/jbc.M002997200

    CAS  PubMed  Google Scholar 

  • Verbruggen N, Hermans C, Schat H (2009) Molecular mechanisms of metal hyperaccumulation in plants. New Phytol 181:759–776. doi:10.1111/j.1469-8137.2008.02748.x

    CAS  PubMed  Google Scholar 

  • Verkleij JAC, Prast JE (1990) Cadmium tolerance and co-tolerance in Silene vulgaris. New Phytol 111:637–645. doi:10.1111/j.1469-8137.1989.tb02358.x

    Google Scholar 

  • Veselý T, Tlustoš P, Száková J (2011) Organic salts enhanced soil risk elements leaching and bioaccumulation in Pistia stratiotes. Plant Soil Environ 57:166–172

    Google Scholar 

  • Vithanage M, Dabrowska BB, Mukherjee B, Sandhi A, Bhattacharya P (2012) Arsenic uptake by plants and possible phytoremediation applications: a brief overview. Environ Chem Lett 10:217–224. doi:10.1007/s10311-011-0349-8

    CAS  Google Scholar 

  • Walker DJ, Clemente R, Bernal MP (2004) Contrasting effects of manure and compost on soil pH, heavy metal availability and growth of Chenopodium album L. in a soil contaminated by pyritic mine waste. Chemosphere 57:215–224. doi:10.1016/j.chemosphere.2004.05.020

    CAS  PubMed  Google Scholar 

  • Wang WS, Shan XQ, Wen B, Zhang SZ (2003) Relationship between the extractable metals from soils and metals taken up by maize roots and shoots. Chemosphere 53:523–530. doi:10.1016/S0045-6535(03)00518-6

    CAS  PubMed  Google Scholar 

  • Wang HB, Wong MH, Lan CY, Baker AJM, Qin YR, Shu WS, Chen GZ, Ye ZH (2007) Uptake and accumulation of arsenic by 11 Pteris taxa from southern China. Environ Pollut 145:225–233. doi:10.1016/j.envpol.2006.03.015

    CAS  PubMed  Google Scholar 

  • Wang KS, Huang LC, Lee HS, Chen PY, Chang SH (2008) Phytoextraction of cadmium by Ipomoea aquatica (water spinach) in hydroponic solution: effects of cadmium speciation. Chemosphere 72:666–672. doi:10.1016/j.chemosphere.2008.03.034

    CAS  PubMed  Google Scholar 

  • Wang J, Feng X, Anderson CWN, Xing Y, Shang L (2012) Remediation of mercury contaminated sites – a review. J Hazard Mater 221–222:1–18

    PubMed  Google Scholar 

  • Watanabe T, Osaki M (2002) Mechanism of adaptation to high aluminium condition in native plant species growing in acid soils: a review. Commun Soil Sci Plant Anal 33:1247–1260. doi:10.1081/CSS-120003885

    CAS  Google Scholar 

  • Wenzel WW, Bunkowski M, Puschenreiter M, Horak O (2003a) Rhizosphere characteristics of indigenously growing nickel hyperaccumulator and excluder plants on serpentine soil. Environ Pollut 123:131–138. doi:10.1016/S0269-7491(02)00341-X

    CAS  PubMed  Google Scholar 

  • Wenzel WW, Unterbrunner R, Sommer P, Sacco P (2003b) Chelate-assisted phytoextraction using canola (Brassica napus L.) in outdoors pot and lysimeter experiments. Plant Soil 249:83–96. doi:10.1023/A:1022516929239

    CAS  Google Scholar 

  • Willscher S, Wittig J, Bergmann H, Büchel G, Merten D, Werner P (2009) Phytoremediation as an alternative way for the treatment of large, low heavy metal contaminated sites: application at a former uranium mining area. Adv Mater Res 71–73:705–708. doi:10.4028/www.scientific.net/AMR.71-73.705

    Google Scholar 

  • Willscher S, Mirgorodsky D, Jablonski L, Ollivier D, Merten D, Büchel G, Wittig J, Werner P (2013) Field scale phytoremediation experiments on a heavy metal and uranium contaminated site, and further utilization of the plant residues. Hydrometallurgy 131–132:46–53

    Google Scholar 

  • Wilson JR, Leang C, Morby AP, Hobman JL, Brown NL (2000) MerF is a mercury transport protein: different structures but a common mechanism for mercuric ion transporters? FEBS Lett 472:78–82. doi:10.1016/S0014-5793(00)01430-7

    CAS  PubMed  Google Scholar 

  • Wong MH (2003) Ecological restoration of mine degraded soils, with emphasis on metal contaminated. Chemosphere 50:775–780. doi:10.1016/S0045-6535(02)00232-1

    CAS  PubMed  Google Scholar 

  • Wu LH, Luo Y, Christie P, Wong MH (2003) Effects of EDTA and low molecular weight organic acids on soil solution properties of a heavy metal polluted soil. Chemosphere 50:819–822. doi:10.1016/S0045-6535(02)00225-4

    CAS  PubMed  Google Scholar 

  • Wu LH, Luo Y, Song J (2007) Manipulating soil metal availability using EDTA and low-molecular-weight organic acids. In: Willey N (ed) Methods in biotechnology: phytoremediation. Methods and reviews. Humana, Mahwah, NJ

    Google Scholar 

  • Wu G, Kang H, Zhang X, Shao H, Chu L, Ruan C (2010) A critical review on the bio-removal of hazardous heavy metals from contaminated soils: issues, progress, eco-environmental concerns and opportunities. J Hazard Mater 174:1–8. doi:10.1016/j.jhazmat.2009.09.113

    CAS  PubMed  Google Scholar 

  • Wu LH, Li Z, Han C, Liu L, Teng Y, Sun X, Pan C, Huang Y, Luo Y, Christie P (2012) Phytoremediation of soil contaminated with cadmium, copper and polychlorinated biphenyls. Int J Phytoremediation 14:570–584. doi:10.1080/15226514.2011.619227

    CAS  PubMed  Google Scholar 

  • Wuana RA, Okieimen FE (2011) Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. ISRN Ecol 2011:1–20. doi:10.5402/2011/402647

    Google Scholar 

  • Xue PY, Yan CZ (2011) Arsenic accumulation and translocation in the submerged macrophyte Hydrilla verticillata (L.f.) Royle. Chemosphere 85:1176–1181. doi:10.1016/j.chemosphere.2011.09.051

    CAS  PubMed  Google Scholar 

  • Xue PY, Li GX, Liu WJ, Yan CZ (2010) Copper uptake and translocation in a submerged aquatic plant Hydrilla verticillata (L.f.) Royle. Chemosphere 81:1098–1103. doi:10.1016/j.chemosphere.2010.09.023

    CAS  PubMed  Google Scholar 

  • Yadav SK (2010) Heavy metals toxicity in plants: an overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants. S Afr J Bot 76:167–179. doi:10.1016/j.sajb.2009.10.007

    CAS  Google Scholar 

  • Yadav SK, Juwarkar AA, Kumar GP, Thawale PR, Singh SK, Chakrabarti T (2009) Bioaccumulation and phyto-translocation of arsenic, chromium and zinc by Jatropha curcas L.: impact of dairy sludge and biofertilizer. Bioresour Technol 100:4616–4622. doi:10.1016/j.biortech.2009.04.062

    CAS  PubMed  Google Scholar 

  • Yang XE, Long XX, Ye HB, He ZL, Cavert DV, Stofella PJ (2004) Cadmium tolerance and hyperaccumulation in a new Zn-hyperaccumulating plant species (Sedum alfredii Hance). Plant Soil 259:181–189. doi:10.1023/B:PLSO.0000020956.24027.f2

    CAS  Google Scholar 

  • Yang XE, Feng Y, He Z, Stoffella PJ (2005) Molecular mechanisms of heavy metal hyperaccumulation and phytoremediation. J Trace Elem Med Biol 18:339–353. doi:10.1016/j.jtemb.2005.02.007

    CAS  PubMed  Google Scholar 

  • Yanqun Z, Yuan L, Jianjun C, Haiyan C, Li Q, Schvartz C (2005) Hyperaccumulation of Pb, Zn and Cd in herbaceous grown on lead–zinc mining area in Yunnan, China. Environ Int 31:755–762. doi:10.1016/j.envint.2005.02.004

    PubMed  Google Scholar 

  • Yao Z, Li J, Xie H, Yu C (2012) Review on remediation technologies of soil contaminated by heavy metals. The 7th international conference on waste management and technology. Proc Environ Sci 16:722–729. doi:10.1016/j.proenv.2012.10.099

    CAS  Google Scholar 

  • Ye ZH, Wong JWC, Wong MH, Lan CY, Baker AJM (1999) Lime and pig manure as ameliorants for re-vegetating lead/zinc mine tailings: a greenhouse study. Bioresour Technol 69:35–43. doi:10.1016/S0960-8524(98)00171-0

    CAS  Google Scholar 

  • Yoo MS, James BR (2002) Zinc extractability as a function of pH in organic waste amended soils. Soil Sci 167:246–259

    CAS  Google Scholar 

  • Zacchini M, Pietrini F, Mugnozza GS, Iori V, Pietrosanti L, Massacci A (2009) Metal tolerance, accumulation and translocation in poplar and willow clones treated with cadmium in hydroponics. Water Air Soil Pollut 197:23–34. doi:10.1007/s11270-008-9788-7

    CAS  Google Scholar 

  • Zayed A, Pilon-Smits E, Souza M, Lin ZQ, Terry N (2000) Remediation of selenium-polluted soils and waters by phytovolatilization. In: Terry N, Bañuelos G (eds) Phytoremediation of contaminated soil and water. CRC, Boca Raton, FL

    Google Scholar 

  • Zenk MH (1996) Heavy metal detoxification in higher plants - a review. Gene 179:21–30. doi:10.1016/S0378-1119(96)00422-2

    CAS  PubMed  Google Scholar 

  • Zhang J, Kirkham MB (1996) Enzymatic responses of the ascorbate-glutathione cycle to drought in Sorghum and sunflower plants. Plant Sci 113:139–147. doi:10.1016/0168-9452(95)04295-4

    CAS  Google Scholar 

  • Zhang W, Cai Y, Downum KR, Ma LQ (2004) Thiol synthesis and arsenic hyperaccumulation in Pteris vittata (Chinese brake fern). Environ Pollut 131:337–345. doi:10.1016/j.envpol.2004.03.010

    CAS  PubMed  Google Scholar 

  • Zhang Z, Rengel Z, Meney K (2010) Cadmium accumulation and translocation in four emergent wetland species. Water Air Soil Pollut 212:239–249. doi:10.1007/s11270-010-0339-7

    CAS  Google Scholar 

  • Zhu YM, Berry DF, Martens DC (1991) Copper availability in two soils amended with 11 annual applications of copper-enriched hog manure. Commun Soil Sci Plant 22:769–783. doi:10.1080/00103629109368452

    CAS  Google Scholar 

  • Zou T, Li T, Zhang X, Yu H, Luo H (2011) Lead accumulation and tolerance characteristics of Athyrium wardii (Hook.) as a potential phytostabilizer. J Hazard Mater 186:683–689. doi:10.1016/j.jhazmat.2010.11.053

    CAS  PubMed  Google Scholar 

  • Zurita F, De Anda J, Belmont MA (2009) Treatment of domestic wastewater and production of commercial flowers in vertical and horizontal subsurface-flow constructed wetlands. Ecol Eng 35:861–869. doi:10.1016/j.ecoleng.2008.12.026

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. P. Pinto Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Pinto, A.P., de Varennes, A., Fonseca, R., Teixeira, D.M. (2015). Phytoremediation of Soils Contaminated with Heavy Metals: Techniques and Strategies. In: Ansari, A., Gill, S., Gill, R., Lanza, G., Newman, L. (eds) Phytoremediation. Springer, Cham. https://doi.org/10.1007/978-3-319-10395-2_10

Download citation

Publish with us

Policies and ethics