Skip to main content

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 321))

  • 3712 Accesses

Abstract

In this paper, a new approach to design nonlinear adaptive PI multi-controllers, for SISO systems, based on neural local linear principal components analysis (PCA) models is proposed. The PCA neural networks only implements the integral term of the PI multi-controller, a proportional term is added to obtain a PI structure. A modified normalized Harris performance index is used for evaluating the controller performance. Some experimental results obtained with a nonlinear three tank benchmark model are presented, showing the adaptive PI-PCA multi-controller performance compared to neural linear PI controllers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ang, K., Chong, G., Li, Y.: Pid control system analysis, design, and technology. IEEE Transactions on Control Systems Technology 13(4), 559–576 (2005)

    Article  Google Scholar 

  2. Astrom, K., Hagglund, T.: The future of pid control. Control Engineering Practice 9, 1163–1175 (2001)

    Article  Google Scholar 

  3. Bezergianni, S., Georgakis, C.: Controller performance assessment based on minimum and open-loop output variance. Control Eng. Practice 8, 791–797 (2000)

    Article  Google Scholar 

  4. Brito Palma, L.: Fault Detection, Diagnosis and Fault Tolerance Approaches in Dynamic Systems based on Black-Box Models. Ph.D. thesis, Universidade Nova de Lisboa, Portugal (2007)

    Google Scholar 

  5. Brito Palma, L., Coito, F., Gil, P.: Design of adaptive sliding window pi-pca controller. In: IEEE 20th Mediterranean Conference on Control and Automation (MED), Barcelona - Spain, July 3-6 (2012)

    Google Scholar 

  6. Brito Palma, L., Coito, F., Gil, P.: Pi controller for siso linear systems based on neural linear pca. In: European Control Conference (paper accepted), Strasbourg, France, June 24-27 (2014)

    Google Scholar 

  7. Brito Palma, L., Coito, F., Gil, P., Neves-Silva, R.: Process control based on pca models. In: 15th IEEE Int. Conf. on Emerging Technologies and Factory Automation (ETFA), Bilbao, Spain, September 13-16 (2010)

    Google Scholar 

  8. Brito Palma, L., Coito, F., Gil, P., Neves-Silva, R.: Design of adaptive pca controllers for siso systems. In: 18th World Congress of the International Federation of Automatic Control (IFAC WC), Milano, Italy, August 28-September 2 (2011)

    Google Scholar 

  9. Brito Palma, L., Moreira, J., Gil, P., Coito, F.: Hybrid approach for control loop performance assessment. In: 5th International Conference on Intelligent Decision Technologies (KES-IDT), Sesimbra, Portugal, June 26-28 (2013)

    Google Scholar 

  10. Cano-Izquierdo, J., Ibarrola, J., Kroeger, M.: Control loop performance assessment with a dynamic neuro-fuzzy model (dfasart). IEEE Trans. on Automation Science and Engineering 9, 377–389 (2012)

    Article  Google Scholar 

  11. Choobkar, S., Sedigh, A., Fatehi, A.: Input-output pairing based on the control performance assessment index. In: IEEE Int. Conf. on Advanced Computer Control (ICACC), China, Shenyang (2010)

    Google Scholar 

  12. Desborough, L., Harris, T.: Performance assessment measures for univariate feedback control. Canadian Journal of Chemical Engineering 70, 1186–1197 (1992)

    Article  Google Scholar 

  13. Diamantaras, K.: Principal Component Neural Networks: theory and applications. Wiley (1996)

    Google Scholar 

  14. Ender, D.: Process control performance: not as good as you think. Control Engineering 180 (1993)

    Google Scholar 

  15. Harris, T.: Assessment of control loop performance. Canadian Journal of Chemical Engineering 67, 856–861 (1989)

    Article  Google Scholar 

  16. Harris, T., Seppala, C., Desborough, L.: A review of performance assessment and process monitoring techniques for univariate and multivariate control systems. In: IFAC ADCHEM Conference, Canada (1997)

    Google Scholar 

  17. Heiming, B., Lunze, J.: Definition of the three-tank benchmark problem for controller reconfiguration. In: European Control Conference, Karlsruhe, Germany (1999)

    Google Scholar 

  18. Horch, A.: Condition Monitoring of Control Loops. Ph.D. thesis, Royal Institute of Technology, Sweden (2000)

    Google Scholar 

  19. Horch, A., Isaksson, A.: A modified index for control loop performance assessment. In: ACC Americal Control Conference, USA, Philadelphia (1998)

    Google Scholar 

  20. Jackson, J.: A User’s Guide to Principal Components. Wiley (2003)

    Google Scholar 

  21. Jelali, M.: An overview of control performance assessment technology and industrial applications. Control Engineering Practice 14, 441–466 (2006)

    Article  Google Scholar 

  22. Kramer, M.: Nonlinear principal component analysis using auto-associative neural networks. AICHE Journal 37(2), 233–243 (1991)

    Article  Google Scholar 

  23. Lemos, J., Rato, L., Mosca, E.: Integrating predictive and switching control: Basic concepts and an experimental case study. In: Progress in Systems and Control Theory. Birkhäuser Verlag (2000)

    Google Scholar 

  24. Liberzon, D.: Switching in Systems and Control. Birkhauser Boston-MA (2003)

    Google Scholar 

  25. Norgaard, M., Ravn, O., Poulsen, N., Hansen, L.: Neural Networks for Modelling and Control of Dynamic Systems. Springer (2003)

    Google Scholar 

  26. Piovoso, M.: The Use of Multivariate Statistics in Process Control. In: The Control Handbook, pp. 561–573. CRC Press (1996)

    Google Scholar 

  27. Piovoso, M., Kosanovich, K.: Applications of multivariate statistical methods to process monitoring and controller design. Int. Journal of Control 59(3), 743–765 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  28. Siemens, A.: How to improve the performance of your plant using the appropriate tools of simatic pcs7 apc portfolio - white paper. Siemens AG (2008)

    Google Scholar 

  29. Stanfelj, N., Marlin, T., MacGregor, J.: Monitoring and diagnosing process control performance: the single loop case. Ind. Eng. Chem. 32, 301–314 (1993)

    Google Scholar 

  30. Vilanova, R., Visioli, A. (eds.): PID Control in the Third Millennium - Lessons Learned and New Approaches. Springer (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Palma, L.B., Coito, F.V., Gil, P.S. (2015). Neural PCA Controller Based on Multi-Models. In: Moreira, A., Matos, A., Veiga, G. (eds) CONTROLO’2014 – Proceedings of the 11th Portuguese Conference on Automatic Control. Lecture Notes in Electrical Engineering, vol 321. Springer, Cham. https://doi.org/10.1007/978-3-319-10380-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-10380-8_11

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-10379-2

  • Online ISBN: 978-3-319-10380-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics