Skip to main content

Community Detection and Visualization of Networks with the Map Equation Framework

  • Chapter
  • First Online:
Measuring Scholarly Impact

Abstract

Large networks contain plentiful information about the organization of a system. The challenge is to extract useful information buried in the structure of myriad nodes and links. Therefore, powerful tools for simplifying and highlighting important structures in networks are essential for comprehending their organization. Such tools are called community-detection methods and they are designed to identify strongly intraconnected modules that often correspond to important functional units. Here we describe one such method, known as the map equation, and its accompanying algorithms for finding, evaluating, and visualizing the modular organization of networks. The map equation framework is very flexible and can identify two-level, multi-level, and overlapping organization in weighted, directed, and multiplex networks with its search algorithm Infomap. Because the map equation framework operates on the flow induced by the links of a network, it naturally captures flow of ideas and citation flow, and is therefore well-suited for analysis of bibliometric networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Collaboration network of network scientists is available for download here: http://mapequation.org/downloads/netscicoauthor2010.net

  2. 2.

    Code for generating significance modules is available for download here: http://www.tp.umu.se/~rosvall/code.html

  3. 3.

    https://bitbucket.org/mapequation/infomap

  4. 4.

    http://www.mingw.org/wiki/GettingStarted

  5. 5.

    http://sourceforge.net/projects/mingwbundle/files/latest/download

References

  • Aldecoa, R., & Marín, I. (2013). Exploring the limits of community detection strategies in complex networks. Scientific Reports, 3, 2216.

    Google Scholar 

  • Barrat, A., Barthelemy, M., & Vespignani, A. (2008). Dynamical processes on complex networks (Vol. 574). Cambridge: Cambridge University Press.

    Book  MATH  Google Scholar 

  • Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent Dirichlet allocation. Journal of Machine Learning Research, 3, 993–1022.

    MATH  Google Scholar 

  • Blondel, V. D., Guillaume, J. L., Lambiotte, R., & Lefebvre, E. (2008). Fast unfolding of communities in large networks. Journal of Statistical Mechanics: Theory and Experiment, 2008(10), P10008.

    Article  Google Scholar 

  • Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., & Hwang, D. U. (2006). Complex networks: Structure and dynamics. Physics Reports, 424(4), 175–308.

    Article  MathSciNet  Google Scholar 

  • Brin, S., & Page, L. (1998). The anatomy of a large-scale hypertextual Web search engine. Computer Networks and ISDN Systems, 30(1), 107–117.

    Article  Google Scholar 

  • Dorogovtsev, S. N., & Mendes, J. F. F. (2003). Evolution of networks: From biological Nets to the Internet and WWW. Oxford: Oxford University Press.

    Book  Google Scholar 

  • Esquivel, A. V., & Rosvall, M. (2011). Compression of flow can reveal overlapping-module organization in networks. Physical Review X, 1(2), 021025.

    Article  Google Scholar 

  • Fortunato, S. (2010). Community detection in graphs. Physics Reports, 486(3), 75–174.

    Article  MathSciNet  Google Scholar 

  • Fortunato, S., & Barthelemy, M. (2007). Resolution limit in community detection. Proceedings of the National Academy of Sciences, 104(1), 36–41.

    Article  Google Scholar 

  • Golub, G. H., & Van Loan, C. F. (2012). Matrix computations (Vol. 3). Baltimore, MD: JHU Press.

    Google Scholar 

  • Gopalan, P. K., & Blei, D. M. (2013). Efficient discovery of overlapping communities in massive networks. Proceedings of the National Academy of Sciences, 110(36), 14534–14539.

    Article  MATH  MathSciNet  Google Scholar 

  • Huffman, D. A. (1952). A method for the construction of minimum redundancy codes. Proceedings of the IRE, 40(9), 1098–1101.

    Article  Google Scholar 

  • Kanungo, T., Mount, D. M., Netanyahu, N. S., Piatko, C. D., Silverman, R., & Wu, A. Y. (2002). An efficient k-means clustering algorithm: Analysis and implementation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(7), 881–892.

    Article  Google Scholar 

  • Karrer, B., & Newman, M. E. (2011). Stochastic blockmodels and community structure in networks. Physical Review E, 83(1), 016107.

    Article  MathSciNet  Google Scholar 

  • Kawamoto, T., & Rosvall, M. (2014). The map equation and the resolution limit in community detection. arXiv preprint arXiv:1402.4385.

    Google Scholar 

  • Lambiotte, R., & Rosvall, M. (2012). Ranking and clustering of nodes in networks with smart teleportation. Physical Review E, 85(5), 056107.

    Article  Google Scholar 

  • Lancichinetti, A., & Fortunato, S. (2009). Community detection algorithms: A comparative analysis. Physical Review E, 80(5), 056117.

    Article  Google Scholar 

  • Lancichinetti, A., Fortunato, S., & Radicchi, F. (2008). Benchmark graphs for testing community detection algorithms. Physical Review E, 78(4), 046110.

    Article  Google Scholar 

  • Lancichinetti, A., Radicchi, F., Ramasco, J. J., & Fortunato, S. (2011). Finding statistically significant communities in networks. PLoS ONE, 6(4), e18961.

    Article  Google Scholar 

  • Newman, M. E. (2001). Scientific collaboration networks. II. Shortest paths, weighted networks, and centrality. Physical Review E, 64(1), 016132.

    Article  Google Scholar 

  • Newman, M. E. (2003). The structure and function of complex networks. SIAM Review, 45(2), 167–256.

    Article  MATH  MathSciNet  Google Scholar 

  • Newman, M. E. (2010). Networks: An introduction. New York, NY: Oxford University Press.

    Book  Google Scholar 

  • Newman, M. E., & Girvan, M. (2004). Finding and evaluating community structure in networks. Physical Review E, 69(2), 026113.

    Article  Google Scholar 

  • Peixoto, T. P. (2013). Hierarchical block structures and high-resolution model selection in large networks. arXiv preprint arXiv:1310.4377.

    Google Scholar 

  • Rosvall, M., & Bergstrom, C. T. (2008). Maps of random walks on complex networks reveal community structure. Proceedings of the National Academy of Sciences, 105(4), 1118–1123.

    Article  Google Scholar 

  • Rosvall, M., & Bergstrom, C. T. (2010). Mapping change in large networks. PLoS ONE, 5(1), e8694.

    Article  Google Scholar 

  • Rosvall, M., & Bergstrom, C. T. (2011). Multilevel compression of random walks on networks reveals hierarchical organization in large integrated systems. PLoS ONE, 6(4), e18209.

    Article  Google Scholar 

  • Rosvall, M., Esquivel, A. V., West, J., Lancichinetti, A., & Lambiotte, R. (2013). Memory in network flows and its effects on community detection, ranking, and spreading. arXiv preprint arXiv:1305.4807.

    Google Scholar 

  • Schaub, M. T., Lambiotte, R., & Barahona, M. (2012). Encoding dynamics for multiscale community detection: Markov time sweeping for the map equation. Physical Review E, 86(2), 026112.

    Article  Google Scholar 

  • Shannon, C. E. (1948). A mathematical theory of communication. Bell System Technical Journal, 27(3), 379–423.

    Article  MATH  MathSciNet  Google Scholar 

  • Traag, V. A., Van Dooren, P., & Nesterov, Y. (2011). Narrow scope for resolution-limit-free community detection. Physical Review E, 84(1), 016114.

    Article  Google Scholar 

  • van Dongen, S. M. (2000). Graph clustering by flow simulation. Doctoral dissertation, University of Utrecht, the Netherlands.

    Google Scholar 

  • Waltman, L., & Eck, N. J. (2012). A new methodology for constructing a publication‐level classification system of science. Journal of the American Society for Information Science and Technology, 63(12), 2378–2392.

    Article  Google Scholar 

  • Ward, J. H., Jr. (1963). Hierarchical grouping to optimize an objective function. Journal of the American Statistical Association, 58(301), 236–244.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Rosvall .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bohlin, L., Edler, D., Lancichinetti, A., Rosvall, M. (2014). Community Detection and Visualization of Networks with the Map Equation Framework. In: Ding, Y., Rousseau, R., Wolfram, D. (eds) Measuring Scholarly Impact. Springer, Cham. https://doi.org/10.1007/978-3-319-10377-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-10377-8_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-10376-1

  • Online ISBN: 978-3-319-10377-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics