Skip to main content

Black Hole Magnetospheres

  • Chapter
  • First Online:
The Formation and Disruption of Black Hole Jets

Part of the book series: Astrophysics and Space Science Library ((ASSL,volume 414))

Abstract

This chapter compares and contrasts winds and jets driven by the two distinct components of the black magnetosphere: the event horizon magnetosphere (the large scale magnetic field lines that thread the event horizon) and the ergospheric disk magnetosphere associated with poloidal magnetic flux threading plasma near the equatorial plane of the ergosphere. The power of jets from the two components as predicted from single-fluid, perfect MHD numerical simulations are compared. The decomposition of the magnetosphere into these two components depends on the distribution of large scale poloidal magnetic flux in the ergosphere. However, the final distribution of magnetic flux in a black hole magnetosphere depends on physics beyond these simple single-fluid treatments, non-ideal MHD (eg, the dynamics of magnetic field reconnection and radiation effects) and two-fluid effects (eg, ion coupled waves and instabilities in the inner accretion flow). In this chapter, it is emphasized that magnetic field line reconnection is the most important of these physical elements. Unfortunately, in single-fluid perfect MHD simulations, reconnection is a mathematical artifact of numerical diffusion and is not determined by physical processes. Consequently, considerable calculational progress is required before we can reliably assess the role of each of these components of black hole magnetospheres in astrophysical systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Baumann, G., Galsgaard, K. Norlund, A.: 3D Solar null point reconnection MHD simulations. Sol. Phys. 284, 467 (2013)

    Article  ADS  Google Scholar 

  • Beckwith, K., Hawley, J., Krolik, J.: The influence of magnetic field geometry on the evolution of black hole accretion flows: similar disks, drastically different jets. ApJ 678, 1180 (2008)

    Article  ADS  Google Scholar 

  • Beckwith, K., Hawley, J., Krolik, J.: Transport of large-scale poloidal flux in black hole accretion. ApJ 707, 428 (2009)

    Article  ADS  Google Scholar 

  • Bicknell, G.: On the relationship between BL lacertae objects and fanaroff-riley I radio galaxies. ApJ 422, 542 (1994)

    Article  ADS  Google Scholar 

  • Blandford, R., Znajek, R.: Electromagnetic extraction of energy from kerr black holes. MNRAS. 179, 433 (1977)

    Article  ADS  Google Scholar 

  • Contopoulos, I., Papadopoulos, D.: The cosmic battery and the inner edge of the accretion disc. MNRAS. 425, 147 (2012)

    Article  ADS  Google Scholar 

  • De Villiers, J-P., Hawley, J., Krolik, J.H.: Magnetically driven accretion flows in the kerr metric. I. models and overall structure. ApJ 599, 1238 (2003)

    Google Scholar 

  • Esin, A., McClintock, J.E., Narayan, R.: Advection-dominated accretion and the spectral states of black hole X-ray binaries: application to nova muscae 1991. ApJ 489, 865 (1997)

    Article  ADS  Google Scholar 

  • Hawley, J., Krolik, J.: Magnetically driven jets in the kerr metric. ApJ 641, 103 (2006)

    Article  ADS  Google Scholar 

  • Hirose, S., Krolik, K., DeVilliers, J., Hawley, J.: Magnetically driven accretion flows in the kerr metric. II. structure of the magnetic field. ApJ 606, 1083 (2004)

    Google Scholar 

  • Igumenshchev, I.V.: Magnetically arrested disks and the origin of poynting jets: a numerical study. ApJ 677, 317 (2008)

    Article  ADS  Google Scholar 

  • Igumenshchev, I.V., Narayan, R., Abramowicz, M.A.: hree-dimensional magnetohydrodynamic simulations of radiatively inefficient accretion flows. ApJ 592, 1042 (2003)

    Google Scholar 

  • Krolik, J., Hawley, J., Hirose, S.: Magnetically driven accretion flows in the kerr metric. IV. dynamical properties of the inner disk. ApJ 622, 1008 (2005)

    Google Scholar 

  • Lubow, S.H., Papaloizou, J.C.B., Pringle, J.E.: Magnetic field dragging in accretion discs. MNRAS 267, 235 (1994)

    Article  ADS  Google Scholar 

  • Malakit, K., Cassak, P., Shav, M., Drake, F.: The hall effect in magnetic reconnection: hybrid versus hall-less hybrid simulations. Geosphys. Res. Lett. 36, L07107 (2009). doi:10.1029/2009GL037538

    ADS  Google Scholar 

  • McKinney, J.: General relativistic magnetohydrodynamic simulations of the jet formation and large-scale propagation from black hole accretion systems. MNRAS 368, 1561 (2006)

    Article  ADS  Google Scholar 

  • McKinney, J., Blandford, R.: Stability of relativistic jets from rotating, accreting black holes via fully three-dimensional magnetohydrodynamic simulations. MNRAS Lett. 394, 126 (2009)

    Article  ADS  Google Scholar 

  • McKinney, J., Gammie, C.: A measurement of the electromagnetic luminosity of a kerr black hole. ApJ 611, 977 (2004)

    Article  ADS  Google Scholar 

  • McKinney, J., Tchekhovskoy, A., Blandford, R.: General relativistic magnetohydrodynamic simulations of magnetically choked accretion flows around black holes. MNRAS 423, 3083 (2012)

    Article  ADS  Google Scholar 

  • Meier, D.L.: A magnetically switched, rotating black hole model for the production of extragalactic radio jets and the fanaroff and riley class division. ApJ 522, 753 (1999)

    Article  ADS  Google Scholar 

  • Meier, D.L., Koide, S., Uchida, Y.: Magnetohydrodynamic production of relativistic jets. Science 291, 84 (2001)

    Article  ADS  Google Scholar 

  • Penrose, R.: Extraction of rotational energy from a black holes. Nuovo Cimento Nuovo Cimento Rivista Serie 1, 252 (1969)

    ADS  Google Scholar 

  • Phinney, E.S.: Ph.D. Dissertation, A theory of radio sources. University of Cambridge (1983)

    Google Scholar 

  • Pontin, D.I.: Three-dimensional magnetic reconnection regimes: a review, Adv. Space Res. 47, 1508 (2011)

    Article  ADS  Google Scholar 

  • Punsly, B.: Magnetically dominated accretion onto black holes. ApJ 372, 424 (1991)

    Article  ADS  Google Scholar 

  • Punsly, B.: Minimum torque and minimum dissipation black hole-driven winds. ApJ 506, 790 (1998)

    Article  ADS  Google Scholar 

  • Punsly, B.: Three-dimensional simulations of ergospheric disk-driven poynting jets. ApJL 661, 21 (2007)

    Article  ADS  Google Scholar 

  • Punsly, B.: Black hole gravitohydromagnetics, 2nd edn. Springer, New York (2008)

    MATH  Google Scholar 

  • Punsly, B., Coroniti, F.V.: Electrodynamics of the event horizon. Phys. Rev. D 40, 3834 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  • Punsly, B., Coroniti, F.V.: Relativistic winds from pulsar and black hole magnetospheres. ApJ 350, 518 (1990a)

    Article  ADS  Google Scholar 

  • Punsly, B., Coroniti, F.V.: Ergosphere-driven winds. ApJ 354, 583 (1990b)

    Article  ADS  Google Scholar 

  • Punsly, B., Igumenshchev, I.V., Hirose, S.: Three-dimensional simulations of vertical magnetic flux in the immediate vicinity of black holes. ApJ 704, 1065 (2009)

    Article  ADS  Google Scholar 

  • Rothstein, D., Lovelace, R.V.E.: Advection of magnetic fields in accretion disks: not so difficult after all. ApJ 677, 1221 (2008)

    Article  ADS  Google Scholar 

  • Sikora, M., Begelman, M.: Magnetic flux paradigm for radio loudness of active galactic nuclei. ApJL 764, 24 (2013)

    Article  ADS  Google Scholar 

  • Stix, T.: Waves in plasmas. American Institue of Physics, New York (1992)

    Google Scholar 

  • Syrovatskii, S.: Pinch sheets and reconnection in astrophysics. ARA& A 19, 163 (1981)

    Article  ADS  Google Scholar 

  • Tchekhovskoy, A., McKinney, J.: Prograde and retrograde black holes: whose jet is more powerful?. MNRAS Lett. 423, 55 (2012)

    Article  ADS  Google Scholar 

  • Tchekhovskoy, A., Narayan, R., McKinney, J.: Black hole spin and the radio loud/quiet dichotomy of active galactic nuclei. ApJ 711, 50 (2010)

    Article  ADS  Google Scholar 

  • Tchekhovskoy, A., Narayan, R., McKinney, J.: Efficient generation of jets from magnetically arrested accretion on a rapidly spinning black hole. MNRAS Lett. 418, 79 (2011)

    Article  ADS  Google Scholar 

  • Threlfall, J. et al.: Nonlinear wave propagation and reconnection at magnetic X-points in the hall MHD regime. A& A 544, 24 (2012)

    Article  ADS  Google Scholar 

  • Uzdensky, D.: Magnetic reconnection in extreme astrophysical environments. Space Sci Rev. (2011). doi:10.1007/s11214-011-9744-5. http://xxx.lanl.gov/abs/1101.2472v1. Published online 25 Feb 2011

  • van Ballegooijen, A.A.: In: Belvedere, G. (ed.) Accretion disks and magnetic fields in astrophysics. ASSL, vol. 156, p. 99. Kluwer, Dordrecht (1989)

    Google Scholar 

  • Wilmot-Smith, A.L., Pontin, D.I., Hornig, G.: Dynamics of braided coronal loops. I. onset of magnetic reconnection, A& A 516, A5 (2010)

    Google Scholar 

  • Yamada, M.: Progress in understanding magnetic reconnection in laboratory and space astrophysical plasmas. Phys. Plasmas 14, 058102 (2007)

    Article  ADS  Google Scholar 

  • Zenitani, S., Hesse, M., Klimas, A., Kuznetsova, M.: New measure of the dissipation region in collisionless magnetic reconnection. Phys. Rev. Lett. 106, 195003 (2011)

    Article  ADS  Google Scholar 

  • Zenitani, S., Shinohara, I., Nagai, T., Wada, T.: Kinetic aspects of the ion current layer in a reconnection outflow exhaust. Phys. Plasmas 20, 092120 (2013). doi:10.1063/1.4821963

    Article  ADS  Google Scholar 

  • Zocco, A., Schekochihin, A.: Reduced fluid-kinetic equations for low-frequency dynamics, magnetic reconnection, and electron heating in low-beta plasmas. Phys. Plasmas 18, 102309 (2011)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian Punsly .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Punsly, B. (2015). Black Hole Magnetospheres. In: Contopoulos, I., Gabuzda, D., Kylafis, N. (eds) The Formation and Disruption of Black Hole Jets. Astrophysics and Space Science Library, vol 414. Springer, Cham. https://doi.org/10.1007/978-3-319-10356-3_6

Download citation

Publish with us

Policies and ethics