Skip to main content

Launching of Active Galactic Nuclei Jets

  • Chapter
  • First Online:
The Formation and Disruption of Black Hole Jets

Part of the book series: Astrophysics and Space Science Library ((ASSL,volume 414))

Abstract

As black holes accrete gas, they often produce relativistic, collimated outflows, or jets. Jets are expected to form in the vicinity of a black hole, making them powerful probes of strong-field gravity. However, how jet properties (e.g., jet power) connect to those of the accretion flow (e.g., mass accretion rate) and the black hole (e.g., black hole spin) remains an area of active research. This is because what determines a crucial parameter that controls jet properties—the strength of large-scale magnetic flux threading the black hole—remains largely unknown. First-principles computer simulations show that due to this, even if black hole spin and mass accretion rate are held constant, the simulated jet powers span a wide range, with no clear winner. This limits our ability to use jets as a quantitative diagnostic tool of accreting black holes. Recent advances in computer simulations demonstrated that accretion disks can accumulate large-scale magnetic flux on the black hole, until the magnetic flux becomes so strong that it obstructs gas infall and leads to a magnetically-arrested disk (MAD). Recent evidence suggests that central black holes in jetted active galactic nuclei and tidal disruptions are surrounded by MADs. Since in MADs both the black hole magnetic flux and the jet power are at their maximum, well-defined values, this opens up a new vista in the measurements of black hole masses and spins and quantitative tests of accretion and jet theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    If a BH were strongly charged, it would attract oppositely-charged particles, which would neutralize the BH charge.

  2. 2.

    If this were not the case, differential rotation between different parts of the field line would cause the production of new toroidal magnetic field loops and the violation of steady-state assumption, similar to the process illustrated in Fig. 3.2a, b.

  3. 3.

    You can download the code at http://rainman.astro.illinois.edu/codelib

  4. 4.

    We do not expect disk luminosity to exceed L Edd by more than a factor of a few, but there is no such constraint on jet luminosity.

  5. 5.

    It is also possible that instead of the BH, a NS with strong magnetic fields, or a magnetar, powers the GRB.

  6. 6.

    With radiation feedback on the structure of the accretion flow accounted for, the ratio \(\dot{M}/\dot{M}_{\mathrm{Edd}}\) is expected to determine the accretion disk angular thickness, hr, which controls the strength of BH magnetic flux and jet power in the MAD state.

References

  • Allen, S.W., Dunn, R.J.H., Fabian, A.C., Taylor, G.B., Reynolds, C.S.: MNRAS 372, 21 (2006)

    ADS  Google Scholar 

  • Balbus, S.A., Hawley, J.F.: ApJ 376, 214 (1991)

    ADS  Google Scholar 

  • Bardeen, J.M.: Nature 226, 64 (1970)

    ADS  Google Scholar 

  • Barkov, M.V., Baushev, A.N.: New Astron. 16, 46 (2011)

    ADS  Google Scholar 

  • Beckwith, K., Hawley, J.F., Krolik, J.H.: ApJ 678, 1180 (2008)

    ADS  Google Scholar 

  • Begelman, M.C.: Accretion disks in active galactic nuclei. In: Miller, J.S. (ed.) Astrophysics of Active Galaxies and Quasi-Stellar Objects, pp. 411–452. University Science Books, Mill Valley (1985)

    Google Scholar 

  • Begelman, M.C., Armitage, P.J.: ApJ 782, L18 (2014)

    ADS  Google Scholar 

  • Berger, E., Zauderer, A., Pooley, G.G., et al.: ApJ 748, 36 (2012)

    ADS  Google Scholar 

  • Bisnovatyi-Kogan, G.S., Ruzmaikin, A.A.: Ap&SS 28, 45 (1974)

    ADS  Google Scholar 

  • Bisnovatyi-Kogan, G.S., Ruzmaikin, A.A.: Ap&SS 42, 401 (1976)

    ADS  Google Scholar 

  • Blandford, R.D.: Beyond the fringe. In: Romney, J., Reid, M. (eds.) Future Directions in High Resolution Astronomy. Astronomical Society of the Pacific Conference Series, vol. 340, p. 3. Astronomical Society of the Pacific, San Francisco (2005)

    Google Scholar 

  • Blandford, R.D., Payne, D.G.: MNRAS 199, 883 (1982)

    ADS  MATH  Google Scholar 

  • Blandford, R.D., Znajek, R.L.: MNRAS 179, 433 (1977)

    ADS  Google Scholar 

  • Bloom, J.S., et al.: Science 333, 203 (2011)

    ADS  Google Scholar 

  • Burrows, D.N., et al.: Nature 476, 421 (2011)

    ADS  Google Scholar 

  • Cenko, S.B., et al.: ApJ 753, 77 (2012)

    ADS  Google Scholar 

  • Chakrabarti, S.K.: ApJ 288, 1 (1985)

    ADS  Google Scholar 

  • Chiueh, T., Li, Z.Y., Begelman, M.C.: ApJ 377, 462 (1991)

    ADS  Google Scholar 

  • Cowperthwaite, P.S., Reynolds, C.S.: ApJ 752, L21 (2012)

    ADS  Google Scholar 

  • Davis, S.W., Narayan, R., Zhu, Y., Barret, D., Farrell, S.A., Godet, O., Servillat, M., Webb, N.A., ApJ 734, 111 (2011)

    ADS  Google Scholar 

  • De Villiers, J.P., Hawley, J.F.: ApJ 589, 458 (2003)

    ADS  Google Scholar 

  • De Villiers, J.P., Hawley, J.F., Krolik, J.H.: ApJ 599, 1238 (2003)

    ADS  Google Scholar 

  • De Villiers, J.P., Hawley, J.F., Krolik, J.H., Hirose, S.: ApJ 620, 878 (2005)

    ADS  Google Scholar 

  • Dexter, J., McKinney, J.C., Markoff, S., Tchekhovskoy, A.: MNRAS 440, 2185 (2014)

    ADS  Google Scholar 

  • Eatough, R.P., Falcke, H., Karuppusamy, R., Lee, K.J., Champion, D.J., Keane, E.F., Desvignes, G., Schnitzeler, D.H.F.M., Spitler, L.G., Kramer, M., Klein, B., Bassa, C., Bower, G.C., Brunthaler, A., Cognard, I., Deller, A.T., Demorest, P.B., Freire, P.C.C., Kraus, A., Lyne, A.G., Noutsos, A., Stappers, B., Wex, N.: Nature 501, 391 (2013)

    ADS  Google Scholar 

  • Esin, A.A., McClintock, J.E., Narayan, R.: ApJ 489, 865 (1997)

    ADS  Google Scholar 

  • Esin, A.A., Narayan, R., Cui, W., Grove, J.E., Zhang, S.N.: ApJ 505, 854 (1998)

    ADS  Google Scholar 

  • Fabian, A., Iwasawa, K., Reynolds, C., Young, A.: Publ. Astron. Soc. Pac. 112(775), 1145 (2000)

    ADS  Google Scholar 

  • Fanaroff, B.L., Riley, J.M.: MNRAS 167, 31P (1974)

    ADS  Google Scholar 

  • Farrell, S.A., Webb, N.A., Barret, D., Godet, O., Rodrigues, J.M.: Nature 460(7251), 73 (2009)

    ADS  Google Scholar 

  • Fender, R.P., Belloni, T.M., Gallo, E.: MNRAS 355, 1105 (2004)

    ADS  Google Scholar 

  • Fender, R.P., Gallo, E., Russell, D.: MNRAS 406, 1425. ArXiv:1003.5516 (2010)

    Google Scholar 

  • Fernandes, C.A.C. et al.: MNRAS 411, 1909 (2011)

    ADS  Google Scholar 

  • Fragile, P.C., Blaes, O.M., Anninos, P., Salmonson, J.D.: ApJ 668, 417 (2007)

    ADS  Google Scholar 

  • Frank, J., King, A., Raine, D.J.: Accretion Power in Astrophysics, 3rd edn. Cambridge University Press, Cambridge (2002)

    Google Scholar 

  • Gammie, C.F., Narayan, R., Blandford, R.: ApJ 516, 177 (1999)

    ADS  Google Scholar 

  • Gammie, C.F., McKinney, J.C., Tóth, G.: ApJ 589, 444 (2003)

    ADS  Google Scholar 

  • Gammie, C.F., Shapiro, S.L., McKinney, J.C.: ApJ 602, 312 (2004)

    ADS  Google Scholar 

  • Ghisellini, G., et al.: MNRAS 402, 497 (2010)

    ADS  Google Scholar 

  • Ghosh, P., Abramowicz, M.A.: MNRAS 292, 887 (1997)

    ADS  Google Scholar 

  • Giannios, D., Metzger, B.D.: MNRAS 416, 2102 (2011)

    ADS  Google Scholar 

  • Guilet, J., Ogilvie, G.I.: MNRAS 424, 2097 (2012)

    ADS  Google Scholar 

  • Guilet, J., Ogilvie, G.I.: MNRAS 430, 822 (2013)

    ADS  Google Scholar 

  • Hawley, J.F., Krolik, J.H.: ApJ 641, 103 (2006)

    ADS  Google Scholar 

  • Heinz, S., Sunyaev, R.A.: MNRAS 343, L59 (2003)

    ADS  Google Scholar 

  • Hui, Y., Krolik, J.H.: ApJ 679, 1405 (2008)

    ADS  Google Scholar 

  • Igumenshchev, I.V.: ApJ 677, 317 (2008)

    ADS  Google Scholar 

  • Igumenshchev, I.V.: ApJ 702, L72 (2009)

    ADS  Google Scholar 

  • Igumenshchev, I., Narayan, R., Abramowicz, M.: ApJ 592, 1042 (2003)

    ADS  Google Scholar 

  • Komissarov, S.S.: MNRAS 326, L41 (2001)

    ADS  Google Scholar 

  • Komissarov, S.S., Barkov, M.V.: MNRAS 397, 1153 (2009)

    ADS  Google Scholar 

  • Krolik, J.H., Hawley, J.F., Hirose, S.: ApJ 622, 1008 (2005)

    ADS  Google Scholar 

  • Kulkarni, A.K., Penna, R.F., Shcherbakov, R.V., Steiner, J.F., Narayan, R., Sä Dowski, A., Zhu, Y., McClintock, J.E., Davis, S.W., McKinney, J.C.: MNRAS 414, 1183 (2011)

    ADS  Google Scholar 

  • Livio, M., Ogilvie, G.I., Pringle, J.E.: ApJ 512, 100 (1999). doi:10.1086/306777

    ADS  Google Scholar 

  • Lubow, S.H., Papaloizou, J.C.B., Pringle, J.E.: MNRAS 267, 235 (1994)

    ADS  Google Scholar 

  • Maccarone, T.J.: A&A 409, 697 (2003)

    ADS  Google Scholar 

  • MacFadyen, A.I., Woosley, S.E.: ApJ 524, 262 (1999)

    ADS  Google Scholar 

  • Martínez-Sansigre, A., Rawlings, S.: MNRAS 414, 1937 (2011)

    ADS  Google Scholar 

  • McClintock, J.E., Narayan, R., Davis, S.W., Gou, L., Kulkarni, A., Orosz, J.A., Penna, R.F., Remillard, R.A., Steiner, J.F.: Class. Quantum Gravity 28(11), 114009 (2011)

    ADS  MathSciNet  Google Scholar 

  • McClintock, J.E., Narayan, R., Steiner, J.F.: Space Sci. Rev., 183, 295–322 (2013)

    ADS  Google Scholar 

  • McKinney, J.C.: ApJ 630, L5 (2005)

    ADS  Google Scholar 

  • McKinney, J.C., Blandford, R.D.: MNRAS 394, L126 (2009)

    ADS  Google Scholar 

  • McKinney, J.C., Gammie, C.F.: ApJ 611, 977 (2004)

    ADS  Google Scholar 

  • McKinney, J.C., Tchekhovskoy, A., Blandford, R.D.: MNRAS 423, 3083 (2012)

    ADS  Google Scholar 

  • McKinney, J.C., Tchekhovskoy, A., Blandford, R.D.: Science 339, 49 (2013)

    ADS  Google Scholar 

  • McKinney, J.C., Tchekhovskoy, A., Sadowski, A., Narayan, R.: MNRAS 441, 3177 (2014)

    ADS  Google Scholar 

  • McNamara, B.R., Kazemzadeh, F., Rafferty, D.A., Bîrzan, L., Nulsen, P.E.J., Kirkpatrick, C.C., Wise, M.W.: ApJ 698, 594 (2009)

    ADS  Google Scholar 

  • McNamara, B.R., Rohanizadegan, M., Nulsen, P.E.J.: ApJ 727, 39 (2011)

    ADS  Google Scholar 

  • Metzger, B.D., Giannios, D., Mimica, P.: MNRAS 420, 3528 (2012)

    ADS  Google Scholar 

  • Narayan, R., McClintock, J.E.: MNRAS 419, L69 (2012)

    ADS  Google Scholar 

  • Narayan, R., Igumenshchev, I.V., Abramowicz, M.A.: PASJ 55, L69 (2003)

    ADS  Google Scholar 

  • Narayan, R., Sa̧dowski, A., Penna, R.F., Kulkarni, A.K.: MNRAS 426, 3241 (2012)

    Google Scholar 

  • Nemmen, R.S., Tchekhovskoy, A.: MNRAS (2014, submitted). ArXiv:1406.7420

  • Novikov, I.D., Thorne, K.S.: Astrophysics of black holes. In: De Witt, C., De Witt, B.S. (eds.) Black Holes-Les Astres Occlus. Gordon & Breach, New York (1973)

    Google Scholar 

  • Penna, R.F., et al.: MNRAS 408, 752 (2010)

    ADS  Google Scholar 

  • Popham, R., Woosley, S.E., Fryer, C.: ApJ 518, 356 (1999)

    ADS  Google Scholar 

  • Potter, W.J., Balbus, S.A.: MNRAS 441, 681 (2014)

    ADS  Google Scholar 

  • Proga, D., Begelman, M.C.: ApJ 592, 767 (2003)

    ADS  Google Scholar 

  • Punsly, B.: ApJ 728, L17 (2011)

    ADS  Google Scholar 

  • Rawlings, S., Saunders, R.: Nature 349, 138 (1991)

    ADS  Google Scholar 

  • Rees, M.J.: Nature 333, 523 (1988)

    ADS  Google Scholar 

  • Remillard, R.A., McClintock, J.E.: ARA&A 44, 49 (2006)

    ADS  Google Scholar 

  • Reynolds, C.S.: Space Sci. Rev., 183, 277–294 (2013a)

    ADS  Google Scholar 

  • Reynolds, C.S.: Class. Quantum Gravity 30(24), 244004 (2013b)

    ADS  Google Scholar 

  • Rothstein, D.M., Lovelace, R.V.E.: ApJ 677, 1221 (2008)

    ADS  Google Scholar 

  • Russell, D.M., Miller-Jones, J.C.A., Maccarone, T.J., Yang, Y.J., Fender, R.P., Lewis, F.: ApJ 739, L19 (2011)

    ADS  Google Scholar 

  • Russell, D.M., Gallo, E., Fender, R.P.: MNRAS 431, 405 (2013)

    ADS  Google Scholar 

  • Sa̧dowski, A., Narayan, R., Penna, R., Zhu, Y.: MNRAS 436, 3856 (2013)

    Google Scholar 

  • Sa̧dowski, A., Narayan, R., McKinney, J.C., Tchekhovskoy, A.: MNRAS 439, 503 (2014)

    Google Scholar 

  • Shafee, R., McKinney, J.C., Narayan, R., Tchekhovskoy, A., et al.: ApJ 687, L25 (2008)

    ADS  Google Scholar 

  • Shakura, N.I., Sunyaev, R.A.: A&A 24, 337 (1973)

    ADS  Google Scholar 

  • Shapiro, S.L., Teukolsky, S.A. (eds.): Black Holes, White Dwarfs and Neutron Stars: The Physics of Compact Objects, pp. 672. Wiley-VCH, Weinheim (1986). ISBN:0-471-87316-0

    Google Scholar 

  • Sikora, M., Stawarz, Ł., Lasota, J.P.: ApJ 658, 815 (2007)

    ADS  Google Scholar 

  • Steiner, J.F., McClintock, J.E., Narayan, R.: ApJ 762, 104 (2013)

    ADS  Google Scholar 

  • Stone, N., Loeb, A.: PRL 108(6), 061302 (2012)

    ADS  Google Scholar 

  • Straub, O., Godet, O., Webb, N., Servillat, M., Barret, D.: ArXiv e-prints (2014)

    Google Scholar 

  • Tanabe, K., Nagataki, S.: Phys. Rev. D 78(2), 024004 (2008)

    ADS  Google Scholar 

  • Tavecchio, F., Becerra-Gonzalez, J., Ghisellini, G., Stamerra, A., Bonnoli, G., Foschini, L., Maraschi, L.: A&A 534, A86 (2011)

    ADS  Google Scholar 

  • Tchekhovskoy, A., Giannios, D.: MNRAS (2014, submitted). ArXiv:1409.4414

    Google Scholar 

  • Tchekhovskoy, A., McKinney, J.C.: MNRAS 423, L55 (2012)

    ADS  Google Scholar 

  • Tchekhovskoy, A., McKinney, J.C., Narayan, R.: MNRAS 379, 469 (2007)

    ADS  Google Scholar 

  • Tchekhovskoy, A., McKinney, J.C., Narayan, R.: MNRAS 388, 551 (2008)

    ADS  Google Scholar 

  • Tchekhovskoy, A., McKinney, J.C., Narayan, R.: ApJ 699, 1789 (2009)

    ADS  Google Scholar 

  • Tchekhovskoy, A., Narayan, R., McKinney, J.C.: ApJ 711, 50 (2010)

    ADS  Google Scholar 

  • Tchekhovskoy, A., Narayan, R., McKinney, J.C.: New Astron. 15, 749 (2010)

    ADS  Google Scholar 

  • Tchekhovskoy, A., Narayan, R., McKinney, J.C.: MNRAS 418, L79 (2011)

    ADS  Google Scholar 

  • Tchekhovskoy, A., McKinney, J.C., Narayan, R.: J. Phys. Conf. Ser. 372(1), 012040 (2012)

    ADS  Google Scholar 

  • Tchekhovskoy, A., Metzger, B.D., Giannios, D., Kelley, L.Z.: MNRAS 437, 2744 (2014)

    ADS  Google Scholar 

  • Thorne, K.S.: ApJ 191, 507 (1974)

    ADS  Google Scholar 

  • Ulmer, A.: ApJ 514, 180 (1999)

    ADS  Google Scholar 

  • Urry, C.M., Padovani, P.: PASP 107, 803 (1995)

    ADS  Google Scholar 

  • van Velzen, S., Falcke, H.: A&A 557, L7 (2013)

    ADS  Google Scholar 

  • Webb, N., Cseh, D., Lenc, E., Godet, O., Barret, D., Corbel, S., Farrell, S., Fender, R., Gehrels, N., Heywood, I.: Science 337, 554 (2012)

    ADS  Google Scholar 

  • Wiersema, K., van der Horst, A.J., Levan, A.J., et al.: MNRAS 421, 1942 (2012)

    ADS  Google Scholar 

  • Woosley, S.E.: ApJ 405, 273 (1993)

    ADS  Google Scholar 

  • Yuan, F., Narayan, R.: ARA&A, 52, 529. ArXiv e-prints (2014)

    Google Scholar 

  • Yuan, F., Quataert, E., Narayan, R.: ApJ 598, 301 (2003)

    ADS  Google Scholar 

  • Zamaninasab, M., Clausen-Brown, E., Savolainen, T., Tchekhovskoy, A.: Nature 510(7503), 126 (2014)

    ADS  Google Scholar 

  • Zauderer, B.A., Berger, E., Soderberg, A.M., et al.: Nature 476, 425 (2011)

    ADS  Google Scholar 

  • Zauderer, B.A., Berger, E., Margutti, R., Others.: ApJ 767, 152 (2013)

    Google Scholar 

  • Zhu, Y., Davis, S.W., Narayan, R., Kulkarni, A.K., Penna, R.F., McClintock J.E.: MNRAS 424, 2504 (2012)

    ADS  Google Scholar 

Download references

Acknowledgements

AT thanks James Steiner for providing data for Fig. 3.12 and the detailed comments on the manuscript that substantially improved its clarity, Denise Gabuzda for her encouragement that made this work possible, Alexander Philippov for helpful suggestions. AT was supported by NASA through Einstein Postdoctoral Fellowship grant number PF3-140115 awarded by the Chandra X-ray Center, which is operated by the Smithsonian Astrophysical Observatory for NASA under contract NAS8-03060, and NASA via High-End Computing (HEC) Program through the NASA Advanced Supercomputing (NAS) Division at Ames Research Center that provided access to the Pleiades supercomputer, as well as NSF through an XSEDE computational time allocation TG-AST100040 on NICS Kraken, Nautilus, TACC Stampede, Maverick, and Ranch. We used Enthought Canopy Python distribution to generate some of the figures for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Tchekhovskoy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Tchekhovskoy, A. (2015). Launching of Active Galactic Nuclei Jets. In: Contopoulos, I., Gabuzda, D., Kylafis, N. (eds) The Formation and Disruption of Black Hole Jets. Astrophysics and Space Science Library, vol 414. Springer, Cham. https://doi.org/10.1007/978-3-319-10356-3_3

Download citation

Publish with us

Policies and ethics