Reactive Security for Smart Grids Using Models@run.time-Based Simulation and Reasoning

  • Thomas HartmannEmail author
  • Francois Fouquet
  • Jacques Klein
  • Gregory Nain
  • Yves Le Traon
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8448)


Smart grids leverage modern information and communication technology to offer new perspectives to electricity consumers, producers, and distributors. However, these new possibilities also increase the complexity of the grid and make it more prone to failures. Moreover, new advanced features like remotely disconnecting meters create new vulnerabilities and make smart grids an attractive target for cyber attackers. We claim that, due to the nature of smart grids, unforeseen attacks and failures cannot be effectively countered relying solely on proactive security techniques. We believe that a reactive and corrective approach can offer a long-term solution and is able to both minimize the impact of attacks and to deal with unforeseen failures. In this paper we present a novel approach combining a Models@run.time-based simulation and reasoning engine with reactive security techniques to intelligently monitor and continuously adapt the smart grid to varying conditions in near real-time.


Models@run.time Reactive security Reasoning engine Smart grid Model-driven engineering Meta-modeling 



The research leading to this publication is supported by the National Research Fund Luxembourg (grant 6816126) and Creos Luxembourg S.A. under the SnT-Creos partnership program.


  1. 1.
    Amin, S.M., Wollenberg, B.F.: Toward a smart grid: power delivery for the 21st century. IEEE Power Energ. Mag. 3(5), 34–41 (2005)CrossRefGoogle Scholar
  2. 2.
    Barth, A., Rubinstein, B.I.P., Sundararajan, M., Mitchell, J.C., Song, D.X., Bartlett, P.L.: A learning-based approach to reactive security. In: CoRR, abs/0912.1155 (2009)Google Scholar
  3. 3.
    Baumeister, T.: Literature review on smart grid cyber security. Technical report CSDL-10-10, Department of Information and Computer Sciences, University of Hawaii, Honolulu, Hawaii 96822, December 2010Google Scholar
  4. 4.
    Berthier, R., Sanders, W.H., Khurana, H.: Intrusion detection for advanced metering infrastructures: requirements and architectural directions. In: SmartGridComm, pp. 350–355 (2010)Google Scholar
  5. 5.
    Berthier, R., Sanders, W.H.: Specification-based intrusion detection for advanced metering infrastructures. In: Alkalai, L., Tsai, T., Yoneda, T. (eds.) PRDC, pp. 184–193. IEEE Computer Society (2011)Google Scholar
  6. 6.
    Blair, G., Bencomo, N., France, R.B.: Models@run.time. Computer 42(10), 22–27 (2009)CrossRefGoogle Scholar
  7. 7.
    Bruno, S., Lamonaca, S., Scala, M.L., Rotondo, G., Stecchi, U.: Load control through smart-metering on distribution networks. In: 2009 IEEE Bucharest PowerTech, pp. 1–8 (2009)Google Scholar
  8. 8.
    Cepeda, J.C., Ramirez, D.O., Colome, D.G.: Probabilistic-based overload estimation for real-time smart grid vulnerability assessment. In: 2012 6th IEEE/PES Transmission and Distribution: Latin America Conference and Exposition (TD-LA), pp. 1–8, September 2012Google Scholar
  9. 9.
    Cleeremans, A., Servan-Schreiber, D., McClelland, J.L.: Finite state automata and simple recurrent networks. Neural Comput. 1(3), 372–381 (1989)CrossRefGoogle Scholar
  10. 10.
    Deilami, S., Masoum, A.S., Moses, P.S., Masoum, M.A.S.: Real-time coordination of plug-in electric vehicle charging in smart grids to minimize power losses and improve voltage profile. IEEE Trans. Smart Grid 2(3), 456–467 (2011)CrossRefGoogle Scholar
  11. 11.
    ECMA International. Standard ECMA-262 - ECMAScript Language Specification. 5.1 edition, June 2011Google Scholar
  12. 12.
    Efthymiou, C., Kalogridis, G.: Smart grid privacy via anonymization of smart metering data. In: SmartGridComm, pp. 238–243 (2010)Google Scholar
  13. 13.
    Ericsson, G.N.: Cyber security and power system communication-essential parts of a smart grid infrastructure. IEEE Trans. Power Delivery 25(3), 1501–1507 (2010)CrossRefGoogle Scholar
  14. 14.
    Fang, X., Misra, S., Xue, G., Yang, D.: Smart grid–the new and improved power grid: a survey. IEEE Commun. Surv. Tut. 14(4), 944–980 (2012)CrossRefGoogle Scholar
  15. 15.
    Farhangi, H.: The path of the smart grid. IEEE Power Energ. Mag. 8(1), 18–28 (2010)CrossRefMathSciNetGoogle Scholar
  16. 16.
    Fouquet, F., Nain, G., Morin, B., Daubert, E., Barais, O., Plouzeau, N., Jézéquel, J.-M.: An eclipse modelling framework alternative to meet the models@runtime requirements. In: France, R.B., Kazmeier, J., Breu, R., Atkinson, C. (eds.) MODELS 2012. LNCS, vol. 7590, pp. 87–101. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  17. 17.
    Fowler, M.: Domain Specific Languages, 1st edn. Addison-Wesley Professional, Boston (2010)Google Scholar
  18. 18.
    Godfrey, T., Mullen, S., Dugan, R.C., Rodine, C., Griffith, D.W., Golmie, N.: Modeling smart grid applications with co-simulation. In: SmartGridComm, pp. 291–296 (2010)Google Scholar
  19. 19.
    Gosling, J., Joy, B., Steele, G., Bracha, G., Buckley, A.: The Java Language Specification, Java SE 7 edn. Addison-Wesley, Bosto (2012)Google Scholar
  20. 20.
    Graglia, R.: Smart grid Luxembourg, September 2013Google Scholar
  21. 21.
    Guille, C., Gross, G.: A conceptual framework for the vehicle-to-grid (V2G) implementation. Energ. Policy 37(11), 4379–4390 (2009)CrossRefGoogle Scholar
  22. 22.
    Caskurlu, B.: Model driven engineering. In: Butler, M., Petre, L., Sere, K. (eds.) IFM 2002. LNCS, vol. 2335, p. 286. Springer, Heidelberg (2002) CrossRefGoogle Scholar
  23. 23.
    Khurana, H., Hadley, M., Frincke, D.A.: Smart-grid security issues. IEEE Secur. Priv. 8(1), 81–85 (2010)CrossRefGoogle Scholar
  24. 24.
    Kundur, D., Feng, X., Liu, S., Zourntos, T., Butler-Purry, K.L.: Towards a framework for cyber attack impact analysis of the electric smart grid. In: SmartGridComm, pp. 244–249 (2010)Google Scholar
  25. 25.
    Lu, G., De, D., Song, W.-Z.: Smartgridlab: a laboratory-based smart grid testbed. In: SmartGridComm, pp. 143–148 (2010)Google Scholar
  26. 26.
    McDaniel, P., McLaughlin, S.: Security and privacy challenges in the smart grid. IEEE Secur. Priv. 7(3), 75–77 (2009)CrossRefGoogle Scholar
  27. 27.
    Morin, B., Barais, O., Jezequel, J., Fleurey, F., Solberg, A.: Models@run.time to support dynamic adaptation. Computer 42(10), 44–51 (2009)CrossRefGoogle Scholar
  28. 28.
    Morin, B., Barais, O., Nain, G., Jezequel, J.-M.: Taming dynamically adaptive systems using models and aspects. In: Proceedings of the 31st International Conference on Software Engineering, ICSE ’09, Washington, DC, USA, pp. 122–132. IEEE Computer Society (2009)Google Scholar
  29. 29.
    Muller, P.-A., Fleurey, F., Jézéquel, J.-M.: Weaving executability into object-oriented meta-languages. In: Briand, L.C., Williams, C. (eds.) MoDELS 2005. LNCS, vol. 3713, pp. 264–278. Springer, Heidelberg (2005) CrossRefGoogle Scholar
  30. 30.
    Rothenberg, J., Widman, L.E., Loparo, K.A., Nielsen, N.R.: The nature of modeling. In: Artificial Intelligence, Simulation and Modeling (1989)Google Scholar
  31. 31.
    Rowe, B.R., Gallaher, M.P.: Private sector cyber security investment: an empirical analysis. In: WEIS (2006)Google Scholar
  32. 32.
    Schneider, F.B.: Implementing fault-tolerant services using the state machine approach: a tutorial. ACM Comput. Surv. (CSUR) 22(4), 299–319 (1990)CrossRefGoogle Scholar
  33. 33.
    Vafaie, H., Imam, I.F.: I.: feature selection methods: genetic algorithms vs greedy-like search. In: Proceedings of the International Conference on Fuzzy and Intelligent Control Systems (1994)Google Scholar
  34. 34.
    Varodayan, D.P., Gao, G.X.: Redundant metering for integrity with information-theoretic confidentiality. In: SmartGridComm, pp. 345–349 (2010)Google Scholar
  35. 35.
    Vogels, W.: Eventually consistent. Queue 6(6), 14–19 (2008)CrossRefGoogle Scholar
  36. 36.
    Wolf, R.W.: Stochastic Modeling and the Theory of Queues. Prentice Hall, Upper Saddle River (1989)Google Scholar
  37. 37.
    Zhao, F., Hanatani, Y., Komano, Y., Smyth, B., Ito, S., Kambayashi, T.: Secure authenticated key exchange with revocation for smart grid. In: IEEE PES Innovative Smart Grid Technologies, pp. 1–8 (2012)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Thomas Hartmann
    • 1
    Email author
  • Francois Fouquet
    • 1
  • Jacques Klein
    • 1
  • Gregory Nain
    • 1
  • Yves Le Traon
    • 1
  1. 1.Interdisciplinary Centre for Security, Reliability and Trust (SnT)University of LuxembourgLuxembourgLuxembourg

Personalised recommendations