Advertisement

A Survey on Privacy in Residential Demand Side Management Applications

  • Markus KarweEmail author
  • Jens Strüker
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8448)

Abstract

Demand Side Management (DSM) is an auspicious concept for managing electricity grids with a high share of renewable energy sources. We provide a survey on privacy energy issues and potential solutions in Demand Response systems. For this we give an overview of privacy issues raised by energy consumption values. We introduce the Smart Metering Gateway concept of the BSI and indicate three technical types of Demand Response (DR). Furthermore we show how the three types can be integrated in the Smart Meter Gateway (SMGW) BSI setting. We present the privacy concerns about three technical DR types and provide an overview of current Privacy Enhancing Technologies that are applicable to mitigate these problems.

Keywords

Smart grid Privacy Demand response 

References

  1. 1.
    Earle, R., Newell, S.: Fostering econcomic demand response in the midwest ISO. http://www.energycollection.us/Energy-Demand-Response/Fostering-Economic-DR.pdfl
  2. 2.
    Bhattacharyya, K., Crow, M.L.: A fuzzy logic based approach to direct load control. IEEE Trans. Power Syst. 11(2), 708–714 (1996)CrossRefGoogle Scholar
  3. 3.
    Clark, K., Sorber, J., Learned-Miller, E.: Current events: compromising web privacy by tapping the electrical outlet (2011)Google Scholar
  4. 4.
    Federal Energy Regulatory Commission: Reports on demand responses and advanced metering. http://www.ferc.gov
  5. 5.
    Koops, B., Cuijpers, C.: Smart metering and privacy in Europe: lessons from the Dutch case. In: Gutwirth, S., Leenes, R., de Hert, P., Poullet, Y. (eds.) European Data Protection: Coming of Age. Springer, Dordrecht (2013)Google Scholar
  6. 6.
    Ericson, T.: Direct load control of residential water heaters. Energy Policy 37(9), 3502–3512 (2009)CrossRefGoogle Scholar
  7. 7.
    Bundesamt für Sicherheit in der Informationstechnik. Bsi tr-03109. https://www.bsi.bund.de
  8. 8.
    Greveler, U., Justus, B., Löhr, D.: Identifikation von videoinhalten ber granulare stromverbrauchsdaten. In: Waidner, M., Suri, N. (eds.) Sicherheit. LNI, vol. 195. GI (2012)Google Scholar
  9. 9.
    Jawurek, M., Johns, M., Kerschbaum, F.: Plug-in privacy for smart metering billing. In: Fischer-Hübner, S., Hopper, N. (eds.) PETS 2011. LNCS, vol. 6794, pp. 192–210. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  10. 10.
    Jawurek, M., Johns, M., Rieck, K.: Smart metering de-pseudonymization. In: ACSAC (2011)Google Scholar
  11. 11.
    Jawurek, M., Kerschbaum, F., Danezis, G.: Sok: privacy technologies for smart grids a survey of options. http://research.microsoft.com/pubs/178055/paper.pdf
  12. 12.
    Jeske, T.: Privacy-preserving smart metering without a trusted-third-party. In: SECRYPT (2011)Google Scholar
  13. 13.
    Molina-Markham, A., Shenoy, P., Fu, K., Cecchet, E., Irwin, D.: Private memoirs of a smart meter. In: Proceedings of the 2nd ACM Workshop on Embedded Sensing Systems for Energy-Efficiency in Building, BuildSys ’10, New York, USA. ACM (2010)Google Scholar
  14. 14.
    Lisovich, M.A., Mulligan, D.K., Wicker, S.B.: Inferring personal information from demand-response systems. IEEE Secur. Priv. 8(1), 11–20 (2010)CrossRefGoogle Scholar
  15. 15.
    Rastogi, V., Nath, S.: Differentially private aggregation of distributed time-series with transformation and encryption. In: Proceedings of the 2010 ACM SIGMOD International Conference on Management of Data, SIGMOD ’10, New York, USA. ACM (2010)Google Scholar
  16. 16.
    Biswas, D., Nefedov, N., Niemi, V.: Distributed usage control. In: ANT/MobiWIS (2011)Google Scholar
  17. 17.
    Fromm, A., Kelbert, F., Pretschner, A.: Data protection in a cloud-enabled smart grid. In: Cuellar, J. (ed.) SmartGridSec 2012. LNCS, vol. 7823, pp. 96–107. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  18. 18.
    Kumari, P., Pretschner, A.: Deriving implementation-level policies for usage control enforcement. In: CODASPY (2012)Google Scholar
  19. 19.
    Kerschbaum, F. Strüker, J.: From a barrier to a bridge: data-privacy in deregulated smart grids. In: ICIS (2012)Google Scholar
  20. 20.
    Strüker, J., Brening, C., Reichert, S.: Inter-organizational demand response applications: how to address moral hazard in smart grids (2013)Google Scholar
  21. 21.
    von Oheimb, D.: IT security architecture approaches for smart metering and smart grid. In: Cuellar, J. (ed.) SmartGridSec 2012. LNCS, vol. 7823, pp. 1–25. Springer, Heidelberg (2013) CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Institut für Informatik ud GesellschaftUniversität FreiburgFreiburgGermany
  2. 2.Institute of Energy Economics (INEWI) at the Fresenius University of Applied SciencesIdsteinGermany

Personalised recommendations