Skip to main content

Hydrodynamic Damage to Animal Cells

  • Chapter
  • First Online:
Animal Cell Culture

Part of the book series: Cell Engineering ((CEEN,volume 9))

Abstract

Large scale, animal cell culture in stirred tank bioreactors, is responsible for greater than &100 billion in sales of human biopharmaceuticals. This success was achieved in spite of the concern of the “shear sensitivity” of animal cells. In this contribution, a summary of the current state of this “shear sensitivity” concern will be discussed, demonstrating that it is not in general a problem with current bioprocess. Example of what is considered the current limits above which effects of hydrodynamic and interfacial concerns begin to negatively impact bioprocesses will also be presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Al-Rubeai M, Singh RP, Goldman MH, Emery AN (1995) Death mechanisms of animal cells in conditions of intensive agitation. Biotechnol Bioeng 45:463–472

    Article  CAS  PubMed  Google Scholar 

  • Augenstein DC, Sinskey AJ, Wang DIC (1971) Effect of shear on the death of two strains of mammalian tissue cells. Biotechnol Bioeng 13:409–418

    Article  CAS  PubMed  Google Scholar 

  • Barbosa MJ, Hadiyanto, Wijffels RH (2004) Overcoming shear stress of microalgae cultures in sparged photobioreactors. Biotechnol Bioeng 85:78–85

    Article  CAS  PubMed  Google Scholar 

  • Bavarian F, Fan LS, Chalmers JJ (1991) Microscopic visualization of insect cell-bubble interactions I: rising bubbles, air-medium, and the foam layer. Biotechnol Prog 7:140–150

    Article  CAS  PubMed  Google Scholar 

  • Birch JR, Boraston R, Wood L (1985) Bulk production of monoclonal antibodies in fermenters. Trends Biotechnol 3:162–166

    Article  Google Scholar 

  • Bluestein M, Mockros LF (1969) Hemolytic effects of energy dissipation in flowing blood. Med Biol Eng 7:1–6

    Article  CAS  PubMed  Google Scholar 

  • Boulton-Stone JM, Blake JR (1993) Gas bubbles bursting at a free surface. J Fluid Mech 254:103–111

    Article  Google Scholar 

  • Boychyn M, Yim SSS, Ayazi Shamlou P, Bulmer M, More J, Hoare M (2001) Characterization of flow intensity in continuous centrifuges for the development of laboratory mimics. Chem Eng Sci 56:4759–4770

    Article  CAS  Google Scholar 

  • Chalmers JJ, Bavarian F (1991) Microscopic visualization of insect cell-bubble interactions. II: the bubble film and bubble rupture. Biotechnol Prog 7:151–158

    Article  CAS  PubMed  Google Scholar 

  • Chattopadhyay D, Rathman J, Chalmers JJ (1995) The protective effect of specific medium additives with respect to bubble rupture. Biotechnol Bioeng 45:473–480

    Article  CAS  PubMed  Google Scholar 

  • Cherry RS, Papoutsakis ET (1986) Hydrodynamic effects on cells in agitated tissue culture reactors. Bioproc Eng 1:81–89

    Article  Google Scholar 

  • Cherry RS, Papoutsakis ET (1988) Physical mechanisms of cell damage in microcarrier bioreactors. Biotechnol Bioeng 32:1001–1014

    Article  CAS  PubMed  Google Scholar 

  • Cherry RS, Papoutsakis ET (1989) Hydrodynamic effects on cells in agitated tissue culture reactors. Bioproc Eng 1:29–41

    Article  Google Scholar 

  • Chisti Y (2000) Animal-cell damage in sparged bioreactors. TIBTECH 18:420–432

    Article  CAS  Google Scholar 

  • Croughan MS, Hamel JF, Wang DIC (1987) Hydrodynamic effects on animal cells grown in microcarrier cultures. Biotechnol Bioeng 29:130–141

    Article  CAS  PubMed  Google Scholar 

  • Croughan MS, Sayre ES, Wang DIC (1989) Viscous reduction of turbulent damage in animal cell cultures. Biotechnol Bioeng 33:862–872

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Briones MA, Brodkey RS, Chalmers JJ (1994) Computer simulations of the rupture of a gas bubble at a gas–liquid interface and its implications in animal cell damage. Chem Eng Sci 49:2301–2320

    Article  CAS  Google Scholar 

  • Godoy-Silva R, Mollet M, Chalmers JJ (2009a) Evaluation of the effect of chronic hydrodynamic stresses on cultures of suspended CHO-6E6 cells. Biotechnol Bioeng 102:1119–1130

    Article  CAS  PubMed  Google Scholar 

  • Godoy-Silva R, Chalmers JJ, Casnocha SA, Bass LA, Ma N (2009b) Physiological response of CHO cells to repetitive hydrodynamic stress. Biotechnol Bioeng 103(6):1103–1117

    Article  CAS  PubMed  Google Scholar 

  • Goldblum S, Bae YK, Hink WF, Chalmers JJ (1990) Protective effect of methylcellulose and other polymers on insect cells subjected to laminar shear stress. Biotechnol Prog 6:383–390

    Article  CAS  PubMed  Google Scholar 

  • Gregoriades N, Clay J, Ma N, Koelling K, Chalmers JJ (2000) Cell damage of microcarrier cultures as a function of local energy dissipation created by a rapid extensional flow. Biotechnol Bioeng 69:171–182

    Article  CAS  PubMed  Google Scholar 

  • Griffiths JB (2000) Animal cell products, overview. In: Spier RE (ed) Encyclopedia of cell technology, vol 1. Wiley, New York, pp 71–76

    Google Scholar 

  • Handa A, Emary AN, Spier PE (1987) On the evaluation of gas–liquid interfacial effects on hybridoma viability in bubble column bioreactors. Dev Biol Stand 66:241–253

    CAS  PubMed  Google Scholar 

  • Harrison RG (1907) Observations on the living developing nerve fibre. Anat Rec 1:116–118

    Article  Google Scholar 

  • Hesse F, Ebel M, Konisch N, Sterlinski R, Kessler W, Wagner R (2003) Comparison of a production process in a membrane-aerated stirred tank and up to 1000 − L airlift bioreactors using BHK-21 cells and chemically defined protein-free medium. Biotechnol Prog 19:833–843

    Article  CAS  PubMed  Google Scholar 

  • Hu W, Rathman JJ, Chalmers JJ (2008) An investigation of small-molecule surfactants to potentially replace Pluronic F-68 for reducing bubble-associated cell damage. Biotechnol Bioeng 101:119–127

    Article  CAS  PubMed  Google Scholar 

  • Hutchinson N, Bingham N, Murrell N, Farid S, Hoare M (2006) Shear stress analysis of mammalian cell suspensions for prediction of industrial centrifugation and its verification. Biotechnol Bioeng 95(3):483–491

    Article  CAS  PubMed  Google Scholar 

  • Jordan M, Sucker H, Einsele A, Widmer F, Eppenberger HM (1994) Interactions of serum and Pluronic F-68 on the physical properties of the bubble surface. Biotechnol Bioeng 43:446–454

    Article  CAS  PubMed  Google Scholar 

  • Keane JT, Ryan D, Gray PP (2003) Effect of shear stress on expression of a recombinant protein by Chinese hamster ovary cells. Biotechnol Bioeng 81:211–220

    Article  CAS  PubMed  Google Scholar 

  • Kolmogorov A (1941a) Dokl Akad Nauk SSSR 30:310–305

    Google Scholar 

  • Kolmogorov A (1941b) Dokl Akad Nauk SSSR 30:538–540

    Google Scholar 

  • Kresta S (1998) Turbulence in stirred tanks: anisotropic, approximate, and applied. Can J Chem Eng 76:563–576

    Article  CAS  Google Scholar 

  • Kunas KT, Papoutsakis ET (1990) Damage mechanisms of suspended animal cells in agitated bioreactors with and without bubble entrainment. Biotechnol Bioeng 36:476–483

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Li F, Hu W, Wiltberger K, Ryll T (2014) Effects of bubble-liquid two-phase turbulent hydrodynamics on cell damage in sparged bioreactors. Biotechnol Prog 30:48–58

    Article  PubMed  Google Scholar 

  • Ma N, Koelling KW, Chalmers JJ (2002) Fabrication and use of a transient contractional flow device to quantify the sensitivity of mammalian and insect cells to hydrodynamic forces. Biotechnol Bioeng 80:428–437

    Article  CAS  PubMed  Google Scholar 

  • Ma N, Chalmers JJ, Aunins JG, Zhou W, Xie L (2004) Quantitative studies of cell-bubble interactions and cell damage at different Pluronic F-68 and cell concentrations. Biotechnol Prog 20:1183–1191

    Article  CAS  PubMed  Google Scholar 

  • MacIntyre F (1972) Flow patterns in breaking bubbles. J Fluid Mech 77:5211–5228

    CAS  Google Scholar 

  • McCoy R, Ward S, Hoare M (2010) Sub-population analysis of human cancer vaccine cells- ultra scale-down characterization of response to shear. Biotechnol Bioeng 106:584–595

    Article  CAS  PubMed  Google Scholar 

  • McQueen A, Bailey JE (1989) Influence of serum level, cell line, flow type and viscosity on flow-induced lysis of suspended mammalian cells. Biotechnol Lett 11:531–536

    Article  Google Scholar 

  • Michaels JD, Petersen JF, McIntire LV, Papoutsakis ET (1991) Protection mechanisms of freely suspended cells (CRL 8018) from fluid-mechanical injury. Viscometer and bioreactor studies using serum, Pluronic F68 and polyethylene glycol. Biotechnol Bioeng 38:169–180

    Article  CAS  PubMed  Google Scholar 

  • Michaels JD, Kunas KT, Papoutsakis ET (1992) Fluid-mechanical damage of freely-suspended animal cells in agitated bioreactors: effects of dextran, derivatized celluloses and polyvinyl alcohol. Chem Eng Commun 118:341–360

    Article  CAS  Google Scholar 

  • Michaels J, Nowak JE, Mallik AK, Koczo K, Wasan DT, Papoutsakis ET (1995) Analysis of cell-to-bubble attachment in sparged bioreactors in the presence of cell-protecting additives. Biotechnol Bioeng 47:407–419

    Article  CAS  PubMed  Google Scholar 

  • Mizrahi A (1983) Production of human interferons- an overview. Dev Biol Stand 55:93–102

    CAS  PubMed  Google Scholar 

  • Mollet M, Ma N, Zhao Y, Brodkey R, Taticek R, Chalmers J (2004) Bioprocess equipment: characterization of energy dissipation rate and its potential to damage cells. Biotechnol Prog 20:1437–1448

    Article  CAS  PubMed  Google Scholar 

  • Mollet M, Godoy-Silva R, Berdugo C, Chalmers JJ (2007) Acute hydrodynamic forces and apoptosis: a complex question. Biotechnol Bioeng 98(4):772–788

    Article  CAS  PubMed  Google Scholar 

  • Mollet M, Godoy-Silva R, Berdugo C, Chalmers JJ (2008) Computer simulations of the energy dissipation rate in a fluorescence activated cell sorter: implications to cells. Biotechnol Bioeng 100(2):260–272

    Article  CAS  PubMed  Google Scholar 

  • Motobu M, Wang P-C, Matsumura M (1998) Effect of shear stress on recombinant Chinese hamster ovary cells. J Ferment Bioeng 85:190–195

    Article  CAS  Google Scholar 

  • Murhammer DW, Goochee CF (1990) Structural features of nonionic polyglycol polymer molecules responsible for the protective effect in sparged animal cell bioreactors. Biotechnol Prog 6:142–148

    Article  CAS  PubMed  Google Scholar 

  • Neal G, Christie J, Keshavarz-Moore E, Shamlou PA (2003) Ultra scale-down approach for the prediction of full-scale recovery of ovine polycolonal immunoglobulins used in the manufacture of snake venom-specific Fab fragment. Biotechnol Bioeng 81(2):149–157

    Article  CAS  PubMed  Google Scholar 

  • Nienow AW (1996) Gas–liquid mixing studies: a comparison of Rushton turbines with some modern impellers. Trans IChemE 74A:417–423

    Google Scholar 

  • Nienow AW, Scott WH, Hewitt CJ, Thomas CR, Lewis G, Amanullah A, Kiss R, Meier SJ (2013) Scale-down studies for assessing the impact of different stress parameters on growth and product quality during animal cell culture. J Eng Res Des 91:2265–2274

    Article  CAS  Google Scholar 

  • Oh SKW, Nienow AW, Al-Rubeai M, Emery AN (1989) The effects of agitation intensity with and without continuous sparging on the growth and antibody production of hybridoma cells. J Biotechnol 12:45–62

    Article  CAS  Google Scholar 

  • Orton DR, Wang DIC (1991) Fluorescent visualization of cell death in bubble aerated bioreactors. Cell culture engineering III, Engineering Foundation, 2–7 Feb 1991

    Google Scholar 

  • Ramirez OT, Mutharasan R (1990) The role of the plasma membrane fluidity on the shear sensitivity of hybridoma growth under hydrodynamic stress. Biotechnol Bioeng 36:911–920

    Article  CAS  PubMed  Google Scholar 

  • Ranjan V, Waterbury R, Xiao Z, Diamond SL (1995) Fluid shear stress induction of the transcriptional activator c-fos in human and bovine endothelial cells, Hela, and Chinese hamster ovary cells. Biotechnol Bioeng 49:383–390

    Article  Google Scholar 

  • Sieck JB, Cordes T, Budach WE, Rhiel MH, Suemeghy Z, Leist C, Villiger TK, Morbidelli M, Soos M (2013) Development of scale-down model of hydrodynamic stress to study the performance of an industrial CHO cell line under simulated production scale bioreactor conditions. J Biotechnol 164:41–49

    Article  CAS  PubMed  Google Scholar 

  • Thomas CR, Al-Rubeai M, Zhang Z (1994) Prediction of mechanical damage to animal cells in turbulence. Cytotechnol 15:329–335

    Article  CAS  Google Scholar 

  • Trinh K, Garcia-Briones M, Hink F, Chalmers JJ (1994) Quantification of damage to suspended insect cells as a result of bubble rupture. Biotechnol Bioeng 43:37–45

    Article  CAS  PubMed  Google Scholar 

  • Van der Pol LA, Beeksma I, Tramper J (1995) Polyethylene glycol as protectant against damage caused by sparging for hybridoma suspension cells in a bubble column. Enzym Microb Technol 17:401–407

    Article  Google Scholar 

  • Varley J, Birch J (1999) Reactor design for large scale suspension animal cell culture. Cytotechnology 29:177–205

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Venkat R, Stock R, Chalmers JJ (1996) Study of hydrodynamics in microcarrier culture spinner vessels: a particle tracking velocimetry approach. Biotechnol Bioeng 49:456–466

    Article  CAS  PubMed  Google Scholar 

  • Vickroy B, Lorenz K, Kelly W (2007) Modeling shear damage to suspended CHO cells during cross-flow filtration. Biotechnol Prog 23:194–199

    Article  CAS  PubMed  Google Scholar 

  • Wernersson ES, Trägårdh C (1999) Scale-up of Rushton turbine-agitated tanks. Chem Eng Sci 54(19):4245–4256

    Article  CAS  Google Scholar 

  • Westoby M, Rogers JK, Haverstock R, Romero J, Pieracci J (2011) Modeling industrial centrifugation of mammalian cell culture using a capillary based scale-down system. Biotechnol Bioeng 108(5):989–998

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Thomas CR (1993) Modeling of animal cell damage in turbulent flows. In: Nienow AW (ed) Proceedings of the 3rd international conference on bioreactor and bioprocesses fluid dynamics. Mechanical Engineering Publications, London, pp 475–482. ISBN 0852988737

    Google Scholar 

  • Zhang Z, Ferenczi MA, Thomas CR (1992) A micromanipulation technique with theoretical cell model for determining mechanical properties of single mammalian cells. Chem Eng Sci 47:1347–1354

    Article  Google Scholar 

  • Zhou G, Kresta SM (1996a) Distribution of energy dissipation between convective and turbulent flow for three frequently used impellers. Trans IChemE 74:379–389

    CAS  Google Scholar 

  • Zhou G, Kresta SM (1996b) Impact of tank geometry on the maximum turbulence energy dissipation rate for impellers. AIChE J 42:2476–2490

    Article  CAS  Google Scholar 

  • Zhu Y, Cuenca JV, Zhou W, Varma A (2008) NS0 cell damage by high gas velocity sparging in protein-free and cholesterol-free cultures. Biotechnol Bioeng 101:751–760

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey J. Chalmers .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Chalmers, J.J., Ma, N. (2015). Hydrodynamic Damage to Animal Cells. In: Al-Rubeai, M. (eds) Animal Cell Culture. Cell Engineering, vol 9. Springer, Cham. https://doi.org/10.1007/978-3-319-10320-4_6

Download citation

Publish with us

Policies and ethics