Skip to main content

Metabolomics in Animal Cell Culture

  • Chapter
  • First Online:
  • 6792 Accesses

Part of the book series: Cell Engineering ((CEEN,volume 9))

Abstract

Metabolomics is defined as a global quantitative assessment of metabolites within a biological system. Metabolic profiling of cell cultures has many potential applications as well as advantages to currently utilized methods for cell-line testing. Metabolite concentrations represent sensitive markers of genomic changes and responses of cells to external stimuli. Effects of drugs or toxins on cell cultures can be observed through the changes in metabolite concentrations. When cell cultures used for production of various biomolecules metabolomics can aid in optimization of cell growth. Metabolomics can also be used as a method for routine monitoring of extracellular metabolic changes in real time measurements. Nuclear magnetic resonance spectroscopy and mass spectrometry are major analytical platforms used for metabolomics measurements. These methods provide detailed, non-biased and highly complementary chemical analyses of metabolic changes within cells (fingerprint) and in excreted metabolites (footprint). This chapter provides review of current applications of metabolomics in cell cultures with an overview of experimental and data analysis methodologies.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Allen J, Davey HM, Broadhurst D, Heald JK, Rowland JJ, Oliver SG, Kell DB (2003) High-throughput classification of yeast mutants for functional genomics using metabolic footprinting. Nat Biotechnol 21:692–696

    CAS  PubMed  Google Scholar 

  • Aranibar N, Borys M, Mackin NA, Ly V, Abu-Absi N, Abu-Absi S, Niemitz M, Schilling B, Li ZJ, Brock B, Russell RJ 2nd, Tymiak A, Reily MD (2011) NMR-based metabolomics of mammalian cell and tissue cultures. J Biomol NMR 49:195–206

    CAS  PubMed  Google Scholar 

  • Bayet-Robert M, Loiseau D, Rio P, Demidem A, Barthomeuf C, Stepien G, Morvan D (2010) Quantitative two-dimensional HRMAS 1H-NMR spectroscopy-based metabolite profiling of human cancer cell lines and response to chemotherapy. Magn Reson Med 63:1172–1183

    CAS  PubMed  Google Scholar 

  • Bi H, Krausz KW, Manna SK, Li F, Johnson CH, Gonzalez FJ (2013) Optimization of harvesting, extraction, and analytical protocols for UPLC-ESI-MS-based metabolomic analysis of adherent mammalian cancer cells. Anal Bioanal Chem 405:5279–5289

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bloom M, Holmes KT, Mountford CE, Williams PG (1986) Complete proton magnetic resonance in whole cells. J Magn Reson 69:73–91

    CAS  Google Scholar 

  • Boccard J, Rutledge DN (2013) A consensus orthogonal partial least squares discriminant analysis (OPLS-DA) strategy for multiblock Omics data fusion. Anal Chim Acta 769:30–39

    CAS  PubMed  Google Scholar 

  • Booth S, Weljie A, Turner R (2013) Computational tools for the secondary analysis of metabolomics experiments. Comput Struct Biotechnol J 4:e201301003

    PubMed Central  PubMed  Google Scholar 

  • Borel M, Pastoureau P, Papon J, Madelmont JC, Moins N, Maublant J, Miot-Noirault E (2009) Longitudinal profiling of articular cartilage degradation in osteoarthritis by high-resolution magic angle spinning 1H NMR spectroscopy: experimental study in the meniscectomized guinea pig model. J Proteome Res 8(5):2594–2600

    CAS  PubMed  Google Scholar 

  • Bower JM, Bolouri H (2001) Computational modeling of genetic and biochemical networks. MIT Press, Cambridge

    Google Scholar 

  • Bradley S, Ouyang A, Purdie J, Smitka T, Wang T, Kaerner A (2010) Fermentanomics: monitoring mammalian cell cultures with NMR spectroscopy. J Am Chem Soc 132:9531–9533

    CAS  PubMed  Google Scholar 

  • Brougham DF, Ivanova G, Gottschalk M, Collins DM, Eustace AJ, O’Connor R, Havel J (2011) Artificial neural networks for classification in metabolomic studies of whole cells using 1H nuclear magnetic resonance. J Biomed Biotechnol 2011:158094

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cao B, Li M, Zha W, Zhao Q, Gu R, Liu L, Aa J (2013) Metabolomic approach to evaluating adriamycin pharmacodynamics and resistance in breast cancer cells. Metabolomics 9:960–973

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cavill R, Kamburov A, Ellis JK, Athersuch TJ, Blagrove MSC, Herwig R, Keun HC (2011) Consensus-phenotype integration of transcriptomic and metabolomic data implies a role for metabolism in the chemosensitivity of tumour cells. PLoS Comput Biol 7:e1001113

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chagoyen M, Pazos F (2011) MBRole: enrichment analysis of metabolomic data. Bioinformatics 27:730–731

    CAS  PubMed  Google Scholar 

  • Chagoyen M, Pazos F (2013) Tools for the functional interpretation of metabolomic experiments. Brief Bioinform 14:737–744

    PubMed  Google Scholar 

  • Cho CR, Labow M, Reinhardt M, van Oostrum J, Peitsch MC (2006) The application of systems biology to drug discovery. Curr Opin Chem Biol 10:294–302

    CAS  PubMed  Google Scholar 

  • Chong WP, Goh LT, Reddy SG, Yusufi FN, Lee DY, Wong NS, Heng CK, Yap MG, Ho YS (2009) Metabolomics profiling of extracellular metabolites in recombinant Chinese Hamster Ovary fed-batch culture. Rapid Commun Mass Spectrom 23:3763–3771

    CAS  PubMed  Google Scholar 

  • Chong WPK, Reddy SG, Yusufi FNK, Lee D-Y, Wong NSC, Heng CK, Yap MGS, Ho YS (2010) Metabolomics-driven approach for the improvement of Chinese hamster ovary cell growth: overexpression of malate dehydrogenase II. J Biotechnol 147:116–121

    CAS  PubMed  Google Scholar 

  • Chong WPK, Yusufi FNK, Lee D-Y, Reddy SG, Wong NSC, Heng CK, Yap MGS, Ho YS (2011) Metabolomics-based identification of apoptosis-inducing metabolites in recombinant fed-batch CHO culture media. J Biotechnol 151:218–224

    CAS  PubMed  Google Scholar 

  • Chong WPK, Thng SH, Hiu AP, Lee D-Y, Chan ECY, Ho YS (2012) LC–MS-based metabolic characterization of high monoclonal antibody-producing Chinese hamster ovary cells. Biotechnol Bioeng 109:3103–3111

    CAS  PubMed  Google Scholar 

  • Chrysanthopoulos PK, Goudar CT, Klapa MI (2010) Metabolomics for high-resolution monitoring of the cellular physiological state in cell culture engineering. Metab Eng 12:212–222

    CAS  PubMed  Google Scholar 

  • Chubukov V, Uhr M, Le Chat L, Kleijn RJ, Jules M, Link H, Sauer U (2013) Transcriptional regulation is insufficient to explain substrate-induced flux changes in Bacillus subtilis. Mol Syst Biol 9:1–13

    Google Scholar 

  • Creek DJ, Nijagal B, Kim D-H, Rojas F, Matthews KR, Barrett MP (2013) Metabolomics guides rational development of a simplified cell culture medium for drug screening against Trypanosoma brucei. Antimicrob Agents Chemother 57:2768–2779

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cuperlovic-Culf M (2013) NMR metabolomics in cancer research. WP Press, Oxford

    Google Scholar 

  • Cuperlovic-Culf M, Chute IC, Culf AS, Touaibia M, Ghosh A, Griffiths S, Tulpan D, Leger S, Belkaid A, Surette M, Ouellette RJ (2011) 1H NMR metabolomics combined with gene expression analysis for the determination of major metabolic differences between subtypes of breast cell lines. Chem Sci 2:2263–2270

    CAS  Google Scholar 

  • Cuperlovic-Culf M, Ferguson D, Culf A, Morin P, Touaibia M (2012) 1H NMR metabolomics analysis of glioblastoma subtypes: correlation between metabolomics and gene expression characteristics. J Biol Chem 287:20164–20175

    CAS  PubMed Central  PubMed  Google Scholar 

  • Danielsson APH, Moritz T, Mulder H, Spégel P (2010) Development and optimization of a metabolomic method for analysis of adherent cell cultures. Anal Biochem 404:30–39

    CAS  PubMed  Google Scholar 

  • Dietmair S, Timmins NE, Gray PP, Nielsen LK, Krömer JO (2010) Towards quantitative metabolomics of mammalian cells: development of a metabolite extraction protocol. Anal Biochem 404:155–164

    CAS  PubMed  Google Scholar 

  • Dietmair S, Hodson MP, Quek L-E, Timmins NE, Chrysanthopoulos P, Jacob SS, Gray P, Nielsen LK (2012a) Metabolite profiling of CHO cells with different growth characteristics. Biotechnol Bioeng 109:1404–1414

    CAS  PubMed  Google Scholar 

  • Dietmair S, Nielsen LK, Timmins NE (2012b) Mammalian cells as biopharmaceutical production hosts in the age of omics. Biotechnol J 7:75–89

    CAS  PubMed  Google Scholar 

  • Dória ML, Cotrim Z, Macedo B, Simões C, Domingues P, Helguero L, Domingues MR (2012) Lipidomic approach to identify patterns in phospholipid profiles and define class differences in mammary epithelial and breast cancer cells. Breast Cancer Res Treat 133:635–648

    PubMed  Google Scholar 

  • Dória ML, Cotrim CZ, Simões C, Macedo B, Domingues P, Domingues MR, Helguero LA (2013) Lipidomic analysis of phospholipids from human mammary epithelial and breast cancer cell lines. J Cell Physiol 228:457–468

    PubMed  Google Scholar 

  • Duarte IF, Marques J, Ladeirinha AF, Rocha C, Lamego I, Calheiros R, Gil AM (2009) Analytical approaches toward successful human cell metabolome studies by NMR spectroscopy. Anal Chem 81:5023–5032

    CAS  PubMed  Google Scholar 

  • Dunn WB (2008) Current trends and future requirements for the mass spectrometric investigation of microbial, mammalian and plant metabolomes. Phys Biol 5:11001

    Google Scholar 

  • Dunn WB, Broadhurst DI, Atherton HJ, Goodacre R, Griffin JL (2010) Systems level studies of mammalian metabolomes: the roles of mass spectrometry and nuclear magnetic resonance spectroscopy. Chem Soc Rev 40:387–426

    PubMed  Google Scholar 

  • Egawa-Takata T, Endo H, Fujita M et al (2010) Early reduction of glucose uptake after cisplatin treatment is a marker of cisplatin sensitivity in ovarian cancer. Cancer Sci 101:2171–2178

    CAS  PubMed  Google Scholar 

  • El-Deredy W, Ashmore S, Branston N (1997) Pretreatment prediction of the chemotherapeutic response of human glioma cell cultures using nuclear magnetic resonance spectroscopy and artificial neural. Cancer Res 57:4196–4199

    CAS  PubMed  Google Scholar 

  • Ellis JK, Athersuch TJ, Cavill R, Radford R, Slattery C, Jennings P, Keun HC (2011) Metabolic response to low-level toxicant exposure in a novel renal tubule epithelial cell system. Mol BioSyst 7:247–257

    CAS  PubMed  Google Scholar 

  • Fiehn O (2001) Combining genomics, metabolome analysis, and biochemical modelling to understand metabolic networks. Comp Funct Genomics 2:155–168

    CAS  PubMed Central  PubMed  Google Scholar 

  • Florian CL, Preece NE, Bhakoo KK, Williams SR, Noble M (1995) Characteristic metabolic profiles revealed by 1H NMR spectroscopy for three types of human brain and nervous system tumours. NMR Biomed 8:253–264

    CAS  PubMed  Google Scholar 

  • Florian CL, Pietsch T, Noble M, Williams SR (1997) Metabolic studies of human primitive neuroectodermal tumour cells by proton nuclear magnetic resonance spectroscopy. Br J Cancer 75:1007–1013

    CAS  PubMed Central  PubMed  Google Scholar 

  • Frezza C, Zheng L, Tennant D, Papkovsky DB, Hedley B, Kalna G, Gottlieb E (2011) Metabolic profiling of hypoxic cells revealed a catabolic signature required for cell survival. PLoS One 6:e24411

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gottschalk M, Ivanova G (2008) Metabolomic studies of human lung carcinoma cell lines using in vitro (1)H NMR of whole cells and cellular extracts. NMR Biomed 21:809–819

    CAS  PubMed  Google Scholar 

  • Goudar CT, Biener R, Meneses R, Zhang C, Michaels J, Piret JM, Konstantinov K (2006) Towards industrial application of real-time metabolic flux analysis for animal cell culture. Adv Biochem Eng 101:99–118

    CAS  Google Scholar 

  • Goudar CT, Biener R, Konstantinov KB, Piret JM (2009) Error propagation from prime variables into specific rates and metabolic fluxes for mammalian cells in perfusion culture. Biotechnol Prog 25:986–998

    CAS  PubMed  Google Scholar 

  • Griffin JL, Shockcor JP (2004) Metabolic profiles of cancer cells. Nat Rev Cancer 4:551–561

    CAS  PubMed  Google Scholar 

  • Griffin JL, Blenkiron C, Valonen PK, Caldas C, Kauppinen RA (2006) High-resolution magic angle spinning 1H NMR spectroscopy and reverse transcription-PCR analysis of apoptosis in a rat glioma. Anal Chem 78(5):1546–1552

    CAS  PubMed  Google Scholar 

  • Halama A, Möller G, Adamski J (2011) Metabolic signatures in apoptotic human cancer cell lines. Omics 15:325–335

    CAS  PubMed  Google Scholar 

  • Halama A, Riesen N, Möller G, Hrabě de Angelis M, Adamski J (2013) Identification of biomarkers for apoptosis in cancer cell lines using metabolomics: tools for individualized medicine. J Intern Med 274:425–439

    CAS  PubMed  Google Scholar 

  • Harris JK, Kelley ST, Spiegelman GB, Pace NR (2003) The genetic core of the universal ancestor. Genome Res 13:407–412

    CAS  PubMed Central  PubMed  Google Scholar 

  • Huang J-H, Xie H-L, Yan J, Cao D-S, Lu H-M, Xu Q-S, Liang Y-Z (2013) Interpretation of type 2 diabetes mellitus relevant GC/MS metabolomics fingerprints by using random forests. Anal Methods 5:4883

    CAS  Google Scholar 

  • Issaq HJ, Van QN, Waybright TJ, Muschik GM, Veenstra TD (2009) Analytical and statistical approaches to metabolomics research. J Sep Sci 32:2183–2199

    CAS  PubMed  Google Scholar 

  • Jain M, Nilsson R, Sharma S, Madhusudhan N, Kitami T, Souza AL, Mootha VK (2012) Metabolite profiling identifies a key role for glycine in rapid cancer cell proliferation. Science 336:1040–1044

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kaddurah-Daouk R, Kristal BS, Weinshilboum RM (2008) Metabolomics: a global biochemical approach to drug response and disease. Ann Rev Pharmacol Toxicol 48:653–683

    CAS  Google Scholar 

  • Khoo SHG, Al-Rubeai M (2007) Metabolomics as a complementary tool in cell culture. Biotechnol Appl Biochem 47:71–84

    CAS  PubMed  Google Scholar 

  • Khoo SHG, Al-Rubeai M (2009) Metabolic characterization of a hyper-productive state in an antibody producing NS0 myeloma cell line. Metab Eng 11:199–211

    CAS  PubMed  Google Scholar 

  • Kildegaard HF, Baycin-Hizal D, Lewis NE, Betenbaugh MJ (2013) The emerging CHO systems biology era: harnessing the ‘omics revolution for biotechnology. Curr Opin Biotechnol 24:1102–1107

    PubMed  Google Scholar 

  • Kitano H (2002) Computational systems biology. Nature 420:206–210

    CAS  PubMed  Google Scholar 

  • Konstantinov K (1996) Monitoring and control of the physiological state of cell cultures. Biotechnol Bioeng 52:271–289

    CAS  PubMed  Google Scholar 

  • Kotze HL, Armitage EG, Sharkey KJ, Allwood JW, Dunn WB, Williams KJ, Goodacre R (2013) A novel untargeted metabolomics correlation-based network analysis incorporating human metabolic reconstructions. BMC Syst Biol 7:107

    PubMed Central  PubMed  Google Scholar 

  • Kozlowski S, Swann P (2006) Current and future issues in the manufacturing and development of monoclonal antibodies. Adv Drug Deliv Rev 58:707–722

    CAS  PubMed  Google Scholar 

  • Kuchel PW (2010) Models of the human metabolic network: aiming to reconcile metabolomics and genomics. Genome Med 2:46

    PubMed Central  PubMed  Google Scholar 

  • León Z, García-Cañaveras JC, Donato MT, Lahoz A (2013) Mammalian cell metabolomics: experimental design and sample preparation. Electrophoresis 34:2762–2775

    PubMed  Google Scholar 

  • Li F, Vijayasankaran N, Shen A, Kiss R, Amanullah A (2010) Cell culture processes for monoclonal antibody production. MAbs 2:466–479

    PubMed Central  PubMed  Google Scholar 

  • Maddula S, Baumbach JI (2010) Heterogeneity in tumor cell energetic metabolome at different cell cycle phases of human colon cancer cell lines. Metabolomics 7:509–523

    Google Scholar 

  • Mahadevan S, Shah SL, Marrie TJ, Slupsky CM (2008) Analysis of metabolomic data using support vector machines. Anal Chem 80:7562–7570

    CAS  PubMed  Google Scholar 

  • Marino S, Voit EO (2006) An automated procedure for the extraction of metabolic network information from time series data. J Bioinform Comput Biol 4:665–691

    CAS  PubMed  Google Scholar 

  • Martineau E, Tea I, Loaëc G, Giraudeau P, Akoka S (2011) Strategy for choosing extraction procedures for NMR-based metabolomic analysis of mammalian cells. Anal Bioanal Chem 401:2133–2142

    CAS  PubMed  Google Scholar 

  • Massimi M, Tomassini A, Sciubba F, Sobolev AP, Devirgiliis LC, Miccheli A (2012) Effects of resveratrol on HepG2 cells as revealed by (1)H-NMR based metabolic profiling. Biochim Biophys Acta 1820(1):1–8

    CAS  PubMed  Google Scholar 

  • Milkevitch M, Shim H, Pilatus U, Pickup S, Wehrle JP, Samid D, Poptani H, Glickson JD, Delikatny EJ (2005) Increases in NMR-visible lipid and glycerophosphocholine during phenylbutyrate- induced apoptosis in human prostate cancer cells. Biochim Biophys Acta 1734:1–12

    CAS  PubMed  Google Scholar 

  • Morin P Jr, Ferguson D, LeBlanc LM, Hébert MJ, Paré AF, Jean-François J, Surette ME, Touaibia M, Cuperlovic-Culf M (2013) NMR metabolomics analysis of the effects of 5-lipoxygenase inhibitors on metabolism in glioblastomas. J Proteome Res 12:2165–2176

    CAS  PubMed  Google Scholar 

  • Morvan D, Demidem A, Papon J, Madelmont JC (2003) Quantitative HRMAS proton total correlation spectroscopy applied to cultured melanoma cells treated by chloroethyl nitrosourea: demonstration of phospholipid metabolism alterations. Magn Reson Med 49:241–248

    CAS  PubMed  Google Scholar 

  • Nicholson JK, Lindon JC, Holmes E (1999) ‘Metabonomics’: understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica 29:1181–1189

    CAS  PubMed  Google Scholar 

  • Oliver SG, Winson MK, Kell DB, Baganz F (1998) Systematic functional analysis of the yeast genome. Trends Biotechnol 16:373–378

    CAS  PubMed  Google Scholar 

  • Pan X, Wilson M, Mirbahai L, McConville C, Arvanitis TN, Griffin JL, Peet AC (2011) In vitro metabonomic study detects increases in UDP-GlcNAc and UDP-GalNAc, as early phase markers of cisplatin treatment response in brain tumor cells. J Proteome Res 10:3493–3500

    CAS  PubMed  Google Scholar 

  • Peet AC, McConville C, Wilson M, Levine BA, Reed M, Dyer SA, Edwards EC, Strachan MC, McMullan DJ, Wilkes TM, Grundy RG (2007) 1H MRS identifies specific metabolite profiles associated with MYCN-amplified and non-amplified tumour subtypes of neuroblastoma cell lines. NMR Biomed 20:692–700

    CAS  PubMed  Google Scholar 

  • Qin X-Y, Wei F, Tanokura M, Ishibashi N, Shimizu M, Moriwaki H, Kojima S (2013) The effect of acyclic retinoid on the metabolomic profiles of hepatocytes and hepatocellular carcinoma cells. PLoS One 8:e82860

    PubMed Central  PubMed  Google Scholar 

  • Rainaldi G, Romano R, Indovina P, Ferrante A, Motta A, Indovina PL, Santini MT (2008) Metabolomics using 1H-NMR of apoptosis and Necrosis in HL60 leukemia cells: differences between the two types of cell death and independence from the stimulus of apoptosis used. Radiat Res 169:170–180

    CAS  PubMed  Google Scholar 

  • Ritter JB, Genzel Y, Reichl U (2008) Simultaneous extraction of several metabolites of energy metabolism and related substances in mammalian cells: optimization using experimental design. Anal Biochem 373:349–369

    CAS  PubMed  Google Scholar 

  • Scherer WF, Syverton JT, Gey GO (1953) Studies on the propagation in vitro of poliomyelitis viruses. IV. Viral multiplication in a stable strain of human malignant epithelial cells (strain HeLa) derived from an epidermoid carcinoma of the cervix. J Exp Med 97:695–710

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schuster S, Fell DA, Dandekar T (2000) A general definition of metabolic pathways useful for systematic organization and analysis of complex metabolic networks. Nat Biotechnol 18:326–332

    CAS  PubMed  Google Scholar 

  • Sellick CA, Hansen R, Maqsood AR, Dunn WB, Stephens GM, Goodacre R, Dickson AJ (2009) Effective quenching processes for physiologically valid metabolite profiling of suspension cultured Mammalian cells. Anal Chem 81:174–183

    CAS  PubMed  Google Scholar 

  • Sellick C, Hansen R, Stephens GM, Goodacre R, Dickson AJ (2011a) Metabolite extraction from suspension-cultured mammalian cells for global metabolite profiling. Nat Protoc 6:1241–1249

    CAS  PubMed  Google Scholar 

  • Sellick CA, Croxford AS, Maqsood AR, Stephens G, Westerhoff HV, Goodacre R, Dickson AJ (2011b) Metabolite profiling of recombinant CHO cells: designing tailored feeding regimes that enhance recombinant antibody production. Biotechnol Bioeng 108:3025–3031

    CAS  PubMed  Google Scholar 

  • Selvarasu S, Ho YS, Chong WP, Wong NS, Yusufi FN, Lee YY, Yap MG, Lee DY (2012) Combined in silico modeling and metabolomics analysis to characterize fed-batch CHO cell culture. Biotechnol Bioeng 109:1415–1429

    CAS  PubMed  Google Scholar 

  • Shaw PG, Chaerkady R, Wang T, Vasilatos S, Huang Y, Van Houten B, Davidson NE (2013) Integrated proteomic and metabolic analysis of breast cancer progression. PLoS One 8:e76220

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shi C, Wang X, Wu S, Zhu Y, Chung LW, Mao HJ (2008) HRMAS 1H-NMR measured changes of the metabolite profile as mesenchymal stem cells differentiate to targeted fat cells in vitro: implications for non-invasive monitoring of stem cell differentiation in vivo. Tissue Eng Regen Med 2:482–490

    CAS  Google Scholar 

  • Shoemaker RH (2006) The NCI60 human tumour cell line anti-cancer drug screen. Nat Rev Cancer 6:813–823

    CAS  PubMed  Google Scholar 

  • Shoemaker RH, Monks A, Alley MC, Scudiero DA, Fine DL, McLemore TL, Abbott BJ, Paull KD, Mayo JG, Boyd MR (1988) Development of human tumor cell line panels for use in disease-oriented drug screening. Prog Clin Biol Res 276:265–286

    CAS  PubMed  Google Scholar 

  • Smith CA, Want EJ, Tong GC, Abagyan R, Siuzdak G (2006) XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Anal Chem 78:779–787

    CAS  PubMed  Google Scholar 

  • Suhre K, Gieger C (2012) Genetic variation in metabolic phenotypes: study designs and applications. Nat Rev Genet 13:759–769

    CAS  PubMed  Google Scholar 

  • Tautenhahn R, Cho K, Uritboonthai W, Zhu Z, Patti G, Siuzdak G (2012) An accelerated workflow for untargeted metabolomics using the METLIN database. Nat Biotechnol 30:826–828

    CAS  PubMed Central  PubMed  Google Scholar 

  • Teng R, Junankar PR, Bubb WA, Rae C, Mercier P, Kirk K (2009) Metabolite profiling of the intraerythrocytic malaria parasite Plasmodium falciparum by (1)H NMR spectroscopy. NMR Biomed 22:292–302

    CAS  PubMed  Google Scholar 

  • Thiele I, Swainston N, Fleming RMT, Hoppe A, Sahoo S, Aurich MK, Palsson BØ (2013) A community-driven global reconstruction of human metabolism. Nat Biotechnol 31:419–425. doi:10.1038/nbt.2488

    CAS  PubMed  Google Scholar 

  • Thompson CM, Petiot E, Lennaertz A, Henry O, Kamen A (2013) Analytical technologies for influenza virus-like particle candidate vaccines: challenges and emerging approaches. Virol J 10:141

    PubMed Central  PubMed  Google Scholar 

  • Tian L, Kim HS, Kim H, Jin X, Jung HS, Park KS, Moon WK (2013) Changes in metabolic markers in insulin-producing β-cells during hypoxia-induced cell death as studied by NMR metabolomics. J Proteome Res 12:3738–3745

    CAS  PubMed  Google Scholar 

  • Tiziani S, Lodi A, Khanim FL, Viant MR, Bunce CM, Günther UL (2009) Metabolomic profiling of drug responses in acute myeloid leukaemia cell lines. PLoS One 4:e4251

    PubMed Central  PubMed  Google Scholar 

  • Tiziani S, Kang Y, Choi JS, Roberts W, Paternostro G (2011) Metabolomic high-content nuclear magnetic resonance-based drug screening of a kinase inhibitor library. Nat Commun 2:545

    PubMed  Google Scholar 

  • Tomar N, De RK (2013) Comparing methods for metabolic network analysis and an application to metabolic engineering. Gene 521:1–14

    CAS  PubMed  Google Scholar 

  • Tulpan D, Leger S, Belliveau L, Culf A, Cuperlovic-Culf M (2011) MetaboHunter: an automatic approach for identification of metabolites from 1H-NMR spectra of complex mixtures. BMC Bioinform 12:400

    CAS  Google Scholar 

  • Tusher VG, Tibshirani R, Chu G (2001) Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci 98:5116–5121

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vernardis SI, Goudar CT, Klapa MI (2013) Metabolic profiling reveals that time related physiological changes in mammalian cell perfusion cultures are bioreactor scale independent. Metab Eng 19:1–9

    CAS  PubMed  Google Scholar 

  • Villas-Bôas SG, Rasmussen S, Lane GA (2005) Metabolomics or metabolite profiles? Trends Biotechnol 23:385–386

    PubMed  Google Scholar 

  • Villas-Bôas SG, Noel S, Lane GA, Attwood G, Cookson A (2006) Extracellular metabolomics: a metabolic footprinting approach to assess fiber degradation in complex media. Anal Biochem 349:297–305

    PubMed  Google Scholar 

  • Wagstaff JL, Masterton RJ, Povey JF, Smales CM, Howard MJ (2013) (1)H NMR spectroscopy profiling of metabolic reprogramming of Chinese Hamster Ovary cells upon a temperature shift during culture. PLoS One 8:e77195

    CAS  PubMed Central  PubMed  Google Scholar 

  • Williams SN, Anthony ML, Brindle KM (1998) Induction of apoptosis in two mammalian cell lines results in increased levels of fructose-1,6-bisphosphate and CDP-choline as determined by 31P MRS. Magn Reson Med 40:411–420

    CAS  PubMed  Google Scholar 

  • Wishart DS, Tzur D, Knox C et al (2007) HMDB: the human metabolome database. Nucleic Acids Res 35:D521–D526

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yang C, Richardson AD, Smith JW, Osterman A (2007) Comparative metabolomics of breast cancer. Pac Symp Biocomput 192:181–192

    Google Scholar 

  • Yuan J, Bennett BD, Rabinowitz JD (2008) Kinetic flux profiling for quantitation of cellular metabolic fluxes. Nat Protoc 3:1328–1340

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zang L, Frenkel R, Simeone J, Lanan M, Byers M, Lyubarskaya Y (2011) Metabolomics profiling of cell culture media leading to the identification of riboflavin photosensitized degradation of tryptophan causing slow growth in cell culture. Anal Chem 83:5422–5430

    CAS  PubMed  Google Scholar 

  • Zhou W, Kantardjieff A (eds) (2014) Mammalian cell cultures for biologics manufacturing, vol 139, Advances in biochemical engineering/biotechnology. Springer, Heidelberg

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miroslava Čuperlović-Culf .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Čuperlović-Culf, M. (2015). Metabolomics in Animal Cell Culture. In: Al-Rubeai, M. (eds) Animal Cell Culture. Cell Engineering, vol 9. Springer, Cham. https://doi.org/10.1007/978-3-319-10320-4_20

Download citation

Publish with us

Policies and ethics