Skip to main content

An Overview of Cell Culture Engineering for the Insect Cell-Baculovirus Expression Vector System (BEVS)

  • Chapter
  • First Online:
Book cover Animal Cell Culture

Part of the book series: Cell Engineering ((CEEN,volume 9))

Abstract

The insect cell-baculovirus protein expression vector system (BEVS) has gained increasing attention as more of its products are approved for human use. However, the system has been relevant for many years, being used for the manufacturing of recombinant veterinary vaccines, as a workhorse in the research laboratory, as an important tool for new drug discovery and as an important source of commercial materials and reagents for research. In this chapter, the key elements that should be considered for the design of a productive BEVS process are discussed, along with a presentation of the state of the art of the system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bédard C, Tom R, Kamen A (1993) Growth, nutrient consumption and end-product accumulation in Sf-9 and BTI-EAA insect cell cultures: insights into growth limitation and metabolism. Biotechnol Prog 9:615–624

    Article  PubMed  Google Scholar 

  • Benavides J, Mena JA, Cisneros M, Ramírez OT, Palomares LA, Rito-Palomares M (2006) Rotavirus-like particles primary recovery from insect cells in aqueous two-phase systems. J Chromatogr B Analyt Technol Biomed Life Sci 842:48–57

    Article  CAS  PubMed  Google Scholar 

  • Benslimane C, Elias CB, Hawari J, Kamen A (2005) Insights into the central metabolism of Spodoptera frugiperda (Sf-9) and Trichoplusia ni BTI-Tn-5B1-4 (Tn-5) insect cells by radiolabeling studies. Biotechnol Prog 21:78–86

    Article  CAS  PubMed  Google Scholar 

  • Bernal V, Carinhas N, Yokomizo AY, Carrondo MJT, Alves PM (2009) Cell density effect in the baculovirus-insect cells system: a quantitative analysis of energetic metabolism. Biotechnol Bioeng 104:162–180

    Article  CAS  PubMed  Google Scholar 

  • Buckland B, Boulanger R, Fino M, Srivastava I, Khramstov N, McPherson C, Meghrous J, Kubera P, Cox MMJ (In press) Technology transfer and scale-up of the Flublok recombinant hemagglutinin influenza vaccine manufacturing process. Vaccine

    Google Scholar 

  • Carreño-Fuentes L, Ascencio JA, Medina A, Aguila S, Palomares LA, Ramírez OT (2013) Strategies for specifically directing metal functionalization of protein nanotubes: constructing protein coated silver nanowires. Nanotechnology 24:235602

    Article  PubMed  Google Scholar 

  • Castro-Acosta RM, Rodríguez-Limas WA, Valderrama B, Ramírez OT, Palomares LA (2014) Effect of metal catalyzed oxidation in recombinant viral protein assemblies. Microb Cell Fact 13:25

    Article  PubMed Central  PubMed  Google Scholar 

  • Chen YR, Zhong S, Fei Z, Hashimoto Y, Xiang JZ et al (2013) The transcriptome of the baculovirus Autographa californica multiple nucleopolyhedrovirus in Trichoplusia ni cells. J Virol 87:6391–6405

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Contreras-Gómez A, Sánchez-Mirón A, García-Camacho F, Molina-Grima E, Chisti Y (2014) Protein production using the baculovirus-insect cell expression system. Biotechnol Prog 30:1–18

    Article  PubMed  Google Scholar 

  • Cox MMJ (2012) Recombinant protein vaccines produced in insect cells. Vaccine 30:1759–1766

    Article  CAS  PubMed  Google Scholar 

  • Davis TR, Wickham K, McKenna K, Granados RR, Shuler ML, Wood HA (1993) Comparative recombinant protein production of eight insect cell lines. In Vitro Cell Dev Biol 29A:388–390

    Article  CAS  Google Scholar 

  • de Vries RP, Smit CH, de Burin E, Rigter A, de Vries E, Cornelissen LAHM, Eggink D, Chung NPY, Moore JP, Sanders RW, Hokke CH, Koopmans M, Rottier PJM, de Haan CAM (2012) Glycan dependent immunogenicity of recombinant soluble trimeric hemagglutinin. J Virol 86:11735–11744

    Article  PubMed Central  PubMed  Google Scholar 

  • Donaldson MS, Shuler ML (1998) Low cost serum-free medium for the BTI Tn5B1-4 insect cell line. Biotechnol Prog 14:573–579

    Article  CAS  PubMed  Google Scholar 

  • Drews M, Doverskog M, Ohman L, Chapman BE, Jacobson U, Kuchel PW, Haggstrom L (2000) Pathways of glutamine metabolism in Spodoptera frugiperda (Sf9) insect cells: evidence for the presence of the nitrogen assimilation system and a metabolic switch by 1H/15N NMR. J Biotechnol 78:23–37

    Article  CAS  PubMed  Google Scholar 

  • Drugmand JC, Schneider YJ, Agathos SN (2012) Insect cells as factories for biomanufacturing. Biotechnol Adv 30:1140–1157

    Article  CAS  PubMed  Google Scholar 

  • Elias CB, Zeizer A, Bédard C, Kamen AA (2000) Enhanced growth of Sf-9 cells to a maximum cell density of 5.2 × 107 cells per mL and production of β-galactosidase ay high cell density by fed batch culture. Biotechnol Bioeng 68:381–388

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Briones MA, Brodkey RS, Chalmers JJ (1994) Computer simulation of the rupture of a gas bubble at a gas-liquid interface and its implications in animal cell damage. Chem Eng Sci 49:2301–2320

    Article  CAS  Google Scholar 

  • Garnier A, Voyer R, Tom R, Perret S, Jardin B, Kamen A (1996) Dissolved carbon dioxide accumulation in a large scale and high density production of TGFβ receptor with baculovirus infected Sf-9 cells. Cytotechnology 22:53–63

    Article  CAS  PubMed  Google Scholar 

  • Goldschmidt R (1915) Some experiments on spermatogenesis in vitro. Proc Natl Acad Sci U S A 1(4):220–222

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Grace TDC (1962) Establishment of four strains of cells from insect tissue grown in vitro. Nature 195:788–789

    Article  CAS  PubMed  Google Scholar 

  • Granados RR (1991) Trichoplusia ni cell line which supports replication of baculoviruses. US Patent 5,300,435A

    Google Scholar 

  • Granados RR, Li G (2002) Clonal cell lines derived from BTI-TN-5B1-4. US Patent 7,179,648 B2

    Google Scholar 

  • Hink WF (1970) Established cell line from the cabbage looper. Trichoplusia ni. Nature 226:466–467

    Article  CAS  PubMed  Google Scholar 

  • Hofmann C, Sandig V, Jennings G, Rudolph M, Schlag P, Strauss M (1995) Efficient gene transfer into human hepatocytes by baculovirus vectors. Proc Natl Acad Sci U S A 92:10099–10103

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jakubowsla A, Ferré J, Herrero S (2009) Enhancing the multiplication of nucleopolyhedrovirus in vitro by manipulation of the pH. J Virol Methods 161:254–258

    Article  Google Scholar 

  • Jorio H, Tran R, Kamen A (2006) Stability of serum-free and purified baculovirus stocks under various storage conditions. Biotechnol Prog 22:319–325

    Article  CAS  PubMed  Google Scholar 

  • Kamen AA, Bédard C, Tom R, Perret S, Jardin B (1996) On-line monitoring of respiration in recombinant-baculovirus infected and uninfected insect cell bioreactor cultures. Biotechnol Bioeng 50:36–48

    Article  CAS  PubMed  Google Scholar 

  • Kioukia N, Nienow A, Emery A, Al-Rubeai M (1995) Physiological and environmental factors affecting the growth of insect cells and infection with baculovirus. J Biotechnol 38:243–251

    Article  CAS  PubMed  Google Scholar 

  • Kohlbrenner E, Aslanidi G, Nash K, Shklyaev S, Campbell-Thompson M, Byrne BB, Snyder RO, Muzyczka N, Warrington KH, Zolotukhin S (2005) Successful production of pseudotyped rAAV vectors using a modified baculovirus expression system. Mol Ther 12:1217–1225

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kool M, Voncken JW, van Lier FLJ, Tramper J, Vlak JM (1991) Detection and analysis of Autographa californica nuclear polyhedrosis virus mutants with defective interfering properties. Virology 183:739–746

    Article  CAS  PubMed  Google Scholar 

  • Kost TA, Condreay JP, Jarvis DL (2005) Baculovirus as versatile vectors for protein expression in insect and mammalian cells. Nat Biotechnol 23:567–575

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Krammer F, Schinko T, Palmberger D, Tauer C, Messner P, Grabherr R (2010) Trichoplusia ni (High Five™) are highly efficient for the production of influenza A virus-like particles: a comparison of two insect cell lines as production platforms for influenza vaccines. Mol Biotechnol 45:226–234

    Article  CAS  PubMed  Google Scholar 

  • Lara AR, Galindo E, Ramírez OT, Palomares LA (2006) Living with heterogeneities in bioreactor. Understanding the effects of environmental gradients on cells. Mol Biotechnol 34:355–381

    Article  CAS  PubMed  Google Scholar 

  • Lin SC, Jan JT, Dionne B, Butler M, Huang MS, Wu CY, Wong CH, Wu SC (2013) Different immunity elicited by recombinant H5N1 hemagglutinin proteins containing pauci-mannose, high-mannose, or complex type N-glycans. PLoS One 8(6):e66719

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liu F, Wu X, Li L, Liu Z, Wang Z (2013) Use of baculovirus expression system for generation of virus-like particles: successes and challenges. Prot Exp Pur 90:104–446

    Article  CAS  Google Scholar 

  • Lua LHL, Connors NK, Sainsbury F, Chuan YP, Wibiwo N, Middelberg APJ (2014) Bioengineering virus-like particles as vaccines. Biotechnol Bioeng 111:425–440

    Article  CAS  PubMed  Google Scholar 

  • Luckow VA, Lee SC, Barry GF, Olins PO (1993) Efficient generation of infectious recombinant baculoviruses by site-specific transposon mediated insertion of foreign genes into a baculovirus genome propagated in Escherichia coli. J Virol 67:4566–4579

    CAS  PubMed Central  PubMed  Google Scholar 

  • Luo WY, Shih YS, Lo WH, Chen HR, Wang SC, Wang CH, Chien CH, Chiang CS, Chuang YJ, Hu YC (2011) Baculovirus vectors for antiangiogenesis-based cancer gene therapy. Cancer Gene Ther 18:637–645

    Article  CAS  PubMed  Google Scholar 

  • Marek M, van Oers MM, Devaraj FF, Vlak JM, Merten OW (2011) Engineering of baculovirus vectors for the manufacture of virion-free biopharmaceuticals. Biotechnol Bioeng 108:1056–1067

    Article  CAS  PubMed  Google Scholar 

  • Meghrous J, Khramstov N, Buckland BC, Palomares LA, Srivastava I (Submitted) Carbon dioxide determines the productivity of a recombinant hemagglutinin influenza vaccine produced by insect cells

    Google Scholar 

  • Mena JA, Kamen AA (2011) Insect cell technology is a versatile and robust vaccine manufacturing platform. Expert Rev Vaccines 10:1063–1081

    Article  CAS  PubMed  Google Scholar 

  • Mena JA, Ramírez OT, Palomares LA (2003) Titration of non-occluded baculovirus using a cell viability assay. Biotechniques 34:260–264

    CAS  PubMed  Google Scholar 

  • Mena JA, Ramírez OT, Palomares LA (2007) Population kinetics during simultaneous infection of insect cells with two recombinant baculoviruses for the production of virus-like particles. BMC Biotechnol 7:39

    Article  PubMed Central  PubMed  Google Scholar 

  • Mendonça RZ, Palomares LA, Ramírez OT (1999) An insight into insect cell metabolism through selective nutrient manipulation. J Biotechnol 72:61–75

    Article  Google Scholar 

  • Mitchell-Logean C, Murhammer DW (1997) Bioreactor headspace purging reduces dissolved carbon dioxide accumulation in insect cell cultures and enhances cell growth. Biotechnol Prog 13:875–877

    Article  CAS  Google Scholar 

  • Monteiro F, Bernal V, Saelens X, Lozano AB, Bernal C, Sevilla A, Carrondo MJT, Alves PM (2014) Metabolic profiling of insect cell lines: unveiling cell line determinants behind system’s productivity. Biotechnol Bioeng 111:816–828

    Article  CAS  PubMed  Google Scholar 

  • Murhamer D, Goochee C (1988) Scale up of insect cell cultures: protective effects of Pluronic F68. Biotechnology 6:1411–1418

    Article  Google Scholar 

  • Nienow AW (2006) Reactor engineering in large scale animal cell culture. Cytotechnology 50:9–33

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ohman L, Alrcon M, Ljunggren J, Ramqvist AK, Haggstrom L (1996) Glutamine is not an essential amino acid for Sf-9 insect cells. Biotechnol Lett 18:765–770

    Article  Google Scholar 

  • Palomares LA, Ramírez OT (1996) The effect of dissolved oxygen tension and the utility of oxygen uptake rate in insect cell culture. Cytotechnology 22:225–237

    Article  CAS  PubMed  Google Scholar 

  • Palomares LA, Ramírez OT (1998) Insect cell culture: recent advances, bioengineering challenges and implication in protein production. In: Galindo E, Ramírez OT (eds) Advances in bioprocess engineering II. Kluwer Academic, Dordrecht, pp 25–52

    Chapter  Google Scholar 

  • Palomares LA, Ramírez OT (2002) Complex N-glycosylation of recombinant proteins by insect cells. Bioprocessing 1(3):70–73

    Google Scholar 

  • Palomares LA, Ramírez OT (2009) Challenges for the production of virus-like particles in insect cells: the case of rotavirus-like particles. Biochem Eng J 45:158–167

    Article  CAS  Google Scholar 

  • Palomares LA, González M, Ramírez OT (2000) Evidence of Pluronic F-68 direct interaction with insect cells: impact on shear protection, recombinant protein and baculovirus production. Enzyme Microb Technol 26:324–331

    Article  CAS  PubMed  Google Scholar 

  • Palomares LA, López S, Ramírez OT (2002) Strategies for manipulating the relative concentration of recombinant rotavirus structural proteins during simultaneous production by insect cells. Biotechnol Bioeng 78:635–644

    Article  CAS  PubMed  Google Scholar 

  • Palomares LA, López S, Ramírez OT (2004) Utilization of oxygen uptake rate to assess the role of glucose and glutamine in the metabolism of insect cell cultures. Biochem Eng J 19(1):87–93

    Article  CAS  Google Scholar 

  • Palomares LA, Estrada-Mondaca S, Ramírez OT (2006) Principles and applications of the insect-cell-baculovirus expression vector system. In: Ozturk S, Hu WS (eds) Cell culture technology for pharmaceutical and cellular applications. Taylor and Francis, Nueva York, pp 627–692

    Google Scholar 

  • Palomares LA, Mena JA, Ramírez OT (2012) Simultaneous expression of recombinant proteins in the insect cell-baculovirus system: production of virus-like particles. Methods 53:389–395

    Article  Google Scholar 

  • Palomares LA, Pedroza JC, Ramírez OT (2001) Cell size as a tool to predict protein productivity of the insect cell-baculovirus expression system. Biotechnol Lett 23:359–364

    Article  CAS  Google Scholar 

  • Peixoto C, Sousa MFQ, Silva AC, Carrondo MJT, Alves PM (2007) Downstream processing of triple layered rotavirus like particles. J Biotechnol 127:452–461

    Article  CAS  PubMed  Google Scholar 

  • Plascencia-Villa G, Saniger JM, Ascencio JA, Palomares LA, Ramírez OT (2009) Use of recombinant rotavirus VP6 nanotubes as a multifunctional template for the synthesis of nanobiomaterials functionalized with metals. Biotechnol Bioeng 104:871–881

    Article  CAS  PubMed  Google Scholar 

  • Plascencia-Villa G, Mena JA, Castro-Acosta R, Fabián JC, Ramírez OT, Palomares LA (2011) Strategies for the purification and characterization of protein scaffolds for the production of hybrid nanobiomaterials. J Chromatogr B Analyt Technol Biomed Life Sci 879:1105–1111

    Article  CAS  PubMed  Google Scholar 

  • Ramírez OT, Mutharasan T (1990) The role of plasma membrane fluidity on the shear sensitivity of hybridomas grown under hydrodynamic stress. Biotechnol Bioeng 36:911–920

    Article  PubMed  Google Scholar 

  • Rhiel M, Mitchell-Logean CM, Murhammer DW (1997) Comparison of Trichoplusia ni BTI-Tn-5B1-4 (High Five) and Spodoptera frugiperda Sf-9 insect cell metabolism in suspension cultures. Biotechnol Bioeng 55:696–706

    Google Scholar 

  • Rohrmann GF (2013) Baculovirus molecular biology, 3rd edn. [Internet]. National Center for Biotechnology Information (US), Bethesda. www.ncbi.nlm.nih.gov/books/NBK114593/

  • Roldao A, Vieira HLA, Alves PM, Oliveira R, Carrondo MJT (2006) Intracellular dynamics in rotavirus-like particle production: evaluation of multigene and monocistronic infection strategies. Proc Biochem 41:2188–2199

    Article  CAS  Google Scholar 

  • Roldao A, Oliveira R, Carrondo MJT, Alves PM (2009) Error assessment in recombinant baculovirus titration: evaluation of different methods. J Virol Methods 159:69–80

    Article  CAS  PubMed  Google Scholar 

  • Smith GE, Summers MD, Fraser MJ (1983) Production of human beta interferon in insect cells infected with a baculovirus expression vector. Mol Cell Biol 3:2156–2165

    CAS  PubMed Central  PubMed  Google Scholar 

  • Summers MD, Smith GE (1987) A manual of methods for baculovirus vectors and insect cell culture procedures, Texas Agricultural Experiment Station bulletin. Texas Agricultural Experiment Station, College Station

    Google Scholar 

  • Taticek RA, Shuler ML (1997) Effect of elevated oxygen and glutamine levels on foreign protein production at high cell densities using the insect cell-baculovirus expression system. Biotechnol Bioeng 54:142–152

    Article  CAS  PubMed  Google Scholar 

  • Taticek RA, Choi C, Phan SE, Palomares LA, Shuler ML (2001) Comparison of growth and recombinant protein expression in two different insect cell lines in attached and suspension culture. Biotechnol Prog 17:676–684

    Article  CAS  PubMed  Google Scholar 

  • Tomiya M, Narang S, Park J, Abdul-Tahman B, Choi O, Singh S, Hiratake J, Sakata K, Betenbaugh MJ, Palter KB, Lee YC (2006) Purification, characterization and cloning of a Spodoptera frugiperda Sf9 β-N-acetylhexosaminidase that hydrolyzes terminal N-acetylglucosamine on the N-glycan core. J Biol Chem 281:19545–19560

    Article  CAS  PubMed  Google Scholar 

  • Torres-Vega MA, Vargas-Jerónimo RY, Montiel-Martínez AG, Muñoz-Fuentes RN, Zamorano-Carrillo A, Pastor-Flores AR, Palomares LA (In press) Delivery of glutamine synthetase gene by baculovirus vectors: a proof of concept for the treatment of acute hyperammonemia. Gene Therapy

    Google Scholar 

  • Trager W (1935) Cultivation of the virus of grasserie in silk-worm tissue cultures. J Exp Med 61:501–513

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tremblay G, Mejia N, MacKenzie R (1992) The NADP-dependent methylenetetrahydrofolate synthetase is not expressed in Spodoptera frugiperda cells. J Biol Chem 267:8281–8285

    CAS  PubMed  Google Scholar 

  • Urabe M, Ding C, Kotin RM (2002) Insect cells as a factory to produce adeno-associated virus type 2 vectors. Hum Gene Ther 13:1935–1943

    Article  CAS  PubMed  Google Scholar 

  • Vlak JM (2007) Professor Shang yin Gao (1909–1989): his legacy in insect cell culture and insect virology. J Invertebr Pathol 95:152–160

    Article  PubMed  Google Scholar 

  • Wyatt SS (1956) Culture in vitro of tissue from the silkworm, Bombyx mori L. J Gen Physiol 39(6):841–852

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wyatt GR, Loughheed TC, Wyatt SS (1956) The chemistry of insect hemolymph. J Gen Physiol 39(6):853–868

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zeiser A, Elias CB, Voyer R, Jardin B, Kamen AA (2000) On-line monitoring of physiological parameters of insect cell cultures during the growth and production process. Biotechnol Prog 16:803–808

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are thankful to Enrique Paz for his artwork. Technical support by Rosa Román and Roberto Rodríguez. Financial support by PAPIIT UNAM IT-200113 and IT-210214.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura A. Palomares .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Palomares, L.A., Realpe, M., Ramírez, O.T. (2015). An Overview of Cell Culture Engineering for the Insect Cell-Baculovirus Expression Vector System (BEVS). In: Al-Rubeai, M. (eds) Animal Cell Culture. Cell Engineering, vol 9. Springer, Cham. https://doi.org/10.1007/978-3-319-10320-4_15

Download citation

Publish with us

Policies and ethics