Skip to main content

Cell Line Development

  • Chapter
  • First Online:
Animal Cell Culture

Part of the book series: Cell Engineering ((CEEN,volume 9))

Abstract

The majority of processes to manufacture biotherapeutics for use in humans are based on mammalian cell lines. Established cell lines are modified by recombinant DNA technologies to produce specific proteins. Such technologies together with cell culture processes have been improved over decades for today’s manufacturing processes.

This chapter describes gene expression approaches to create mammalian hosts that produce the protein of choice. It focuses on methods that are currently applied or have been developed in the last years as well as technologies that are thought to be relevant for future applications. While these methods are directed towards high, stable and predictable production of the secreted protein they also form the basis for further modifications that lead to robust manufacturing processes through improvement of cellular properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Antoniou MN, Skipper KA, Anakok O (2013) Optimizing retroviral gene expression for effective therapies. Hum Gene Ther 24:363–374

    CAS  PubMed  Google Scholar 

  • Argyros O, Wong SP, Harbottle RP (2011) Non-viral episomal modification of cells using S/Mar elements. Expert Opin Biol Ther 11:1177–1191

    CAS  PubMed  Google Scholar 

  • Assenberg R, Wan PT, Geisse S, Mayr LM (2013) Advances in recombinant protein expression for use in pharmaceutical research. Curr Opin Struct Biol 23:393–402

    CAS  PubMed  Google Scholar 

  • Baiker A, Maercker C, Piechaczek C, Schmidt SB, Bode J, Benham C, Lipps HJ (2000) Mitotic stability of an episomal vector containing a human scaffold/matrix-attached region is provided by association with nuclear matrix. Nat Cell Biol 2:182–184

    CAS  PubMed  Google Scholar 

  • Baldi L, Hacker DL, Adam M, Wurm FM (2007) Recombinant protein production by large-scale transient gene expression in mammalian cells: state of the art and future perspectives. Biotechnol Lett 29:677–684

    CAS  PubMed  Google Scholar 

  • Batenchuk C, St-Pierre S, Tepliakova L, Adiga S, Szuto A, Kabbani N, Bell JC, Baetz K, Kaern M (2011) Chromosomal position effects are linked to sir2-mediated variation in transcriptional burst size. Biophys J 100:L56–L58

    CAS  PubMed Central  PubMed  Google Scholar 

  • Baum C, Kustikova O, Modlich U, Li Z, Fehse B (2006) Mutagenesis and oncogenesis by chromosomal insertion of gene transfer vectors. Hum Gene Ther 17:253–263

    CAS  PubMed  Google Scholar 

  • Bian Q, Belmont AS (2010) Bac Tg-Embed: one-step method for high-level, copy-number-dependent, position-independent transgene expression. Nucleic Acids Res 38:e127

    PubMed Central  PubMed  Google Scholar 

  • Bird AW, Erler A, Fu J, Heriche JK, Maresca M, Zhang Y, Hyman AA, Stewart AF (2012) High-efficiency counterselection recombineering for site-directed mutagenesis in bacterial artificial chromosomes. Nat Methods 9:103–109

    CAS  Google Scholar 

  • Blaas L, Musteanu M, Eferl R, Bauer A, Casanova E (2009) Bacterial artificial chromosomes improve recombinant protein production in mammalian cells. BMC Biotechnol 9:3

    PubMed Central  PubMed  Google Scholar 

  • Blaas L, Musteanu M, Grabner B, Eferl R, Bauer A, Casanova E (2012) The use of bacterial artificial chromosomes for recombinant protein production in mammalian cell lines recombinant gene expression. In: Lorence A (ed) Recombinant gene expression: reviews and protocols, vol 824, 3rd edn, Methods in molecular biology. Springer, New York, 581ff

    Google Scholar 

  • Blesch A (2004) Lentiviral and Mlv based retroviral vectors for ex vivo and in vivo gene transfer. Methods 33:164–172

    CAS  PubMed  Google Scholar 

  • Boch J, Scholze H, Schornack S, Landgraf A, Hahn S, Kay S, Lahaye T, Nickstadt A, Bonas U (2009) Breaking the code of DNA binding specificity of TAL-type III effectors. Science 326:1509–1512

    CAS  PubMed  Google Scholar 

  • Buchholz F, Ringrose L, Angrand PO, Rossi F, Stewart AF (1996) Different thermostabilities of FLP and Cre recombinases: implications for applied site-specific recombination. Nucleic Acids Res 24:4256–4262

    CAS  PubMed Central  PubMed  Google Scholar 

  • Capecchi MR (2005) Gene targeting in mice: functional analysis of the mammalian genome for the twenty-first century. Nat Rev Genet 6:507–512

    CAS  PubMed  Google Scholar 

  • Carlson CM, Dupuy AJ, Fritz S, Roberg-Perez KJ, Fletcher CF, Largaespada DA (2003) Transposon mutagenesis of the mouse germline. Genetics 165:243–256

    CAS  PubMed Central  PubMed  Google Scholar 

  • Carrondo M, Panet A, Wirth D, Coroadinha AS, Cruz P, Falk H, Schucht R, Dupont F, Geny-Fiamma C, Merten OW, Hauser H (2011) Integrated strategy for the production of therapeutic retroviral vectors. Hum Gene Ther 22:370–379

    CAS  PubMed  Google Scholar 

  • Cermak T, Doyle EL, Christian M, Wang L, Zhang Y, Schmidt C, Baller JA, Somia NV, Bogdanove AJ, Voytas DF (2011) Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res 39:e82

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cervantes RB, Stringer JR, Shao C, Tischfield JA, Stambrook PJ (2002) Embryonic stem cells and somatic cells differ in mutation frequency and type. Proc Natl Acad Sci U S A 99:3586–3590

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chamberlain JR, Schwarze U, Wang PR, Hirata RK, Hankenson KD, Pace JM, Underwood RA, Song KM, Sussman M, Byers PH, Russell DW (2004) Gene targeting in stem cells from individuals with osteogenesis imperfecta. Science 303:1198–1201

    CAS  PubMed  Google Scholar 

  • Chamberlain JR, Deyle DR, Schwarze U, Wang P, Hirata RK, Li Y, Byers PH, Russell DW (2008) Gene targeting of mutant COL1A2 alleles in mesenchymal stem cells from individuals with osteogenesis imperfecta. Mol Ther 16:187–193

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chen CM, Krohn J, Bhattacharya S, Davies B (2011) A comparison of exogenous promoter activity at the ROSA26 locus using a PhiiC31 integrase mediated cassette exchange approach in mouse ES cells. PLoS One 6:e23376

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cho SW, Kim S, Kim JM, Kim JS (2013) Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nat Biotechnol 31:230–232

    CAS  PubMed  Google Scholar 

  • Choo Y, Klug A (1994) Selection of DNA binding sites for zinc fingers using rationally randomized DNA reveals coded interactions. Proc Natl Acad Sci U S A 91:11168–11172

    CAS  PubMed Central  PubMed  Google Scholar 

  • Choulika A, Perrin A, Dujon B, Nicolas JF (1995) Induction of homologous recombination in mammalian chromosomes by using the I-SceI system of Saccharomyces cerevisiae. Mol Cell Biol 15:1968–1973

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chusainow J, Yang YS, Yeo JH, Toh PC, Asvadi P, Wong NS, Yap MG (2009) A study of monoclonal antibody-producing CHO cell lines: what makes a stable high producer? Biotechnol Bioeng 102:1182–1196

    CAS  PubMed  Google Scholar 

  • Copeland NG, Jenkins NA, Court DL (2001) Recombineering: a powerful new tool for mouse functional genomics. Nat Rev Genet 2:769–779

    CAS  PubMed  Google Scholar 

  • Coroadinha AS, Schucht R, Gama-Norton L, Wirth D, Hauser H, Carrondo MJ (2006) The use of recombinase mediated cassette exchange in retroviral vector producer cell lines: predictability and efficiency by transgene exchange. J Biotechnol 124:457–468

    CAS  PubMed  Google Scholar 

  • Cost GJ, Freyvert Y, Vafiadis A, Santiago Y, Miller JC, Rebar E, Collingwood TN, Snowden A, Gregory PD (2010) BAK and BAX deletion using zinc-finger nucleases yields apoptosis-resistant CHO cells. Biotechnol Bioeng 105:330–340

    CAS  PubMed  Google Scholar 

  • Cradick TJ, Fine EJ, Antico CJ, Bao G (2013) CRISPR/Cas9 systems targeting beta-globin and CCR5 genes have substantial off-target activity. Nucleic Acids Res 41:9584–9592

    CAS  PubMed Central  PubMed  Google Scholar 

  • Crawford Y, Zhou M, Hu Z, Joly J, Snedecor B, Shen A, Gao A (2013) Fast identification of reliable hosts for targeted cell line development from a limited-genome screening using combined phiC31 integrase and CRE-Lox technologies. Biotechnol Prog 29:1307–1315

    CAS  PubMed  Google Scholar 

  • Daboussi F, Zaslavskiy M, Poirot L, Loperfido M, Gouble A, Guyot V, Leduc S, Galetto R, Grizot S, Oficjalska D, Perez C, Delacote F, Dupuy A, Chion-Sotinel I, Le Clerre D, Lebuhotel C, Danos O, Lemaire F, Oussedik K, Cedrone F, Epinat JC, Smith J, Yanez-Munoz RJ, Dickson G, Popplewell L, Koo T, Vandendriessche T, Chuah MK, Duclert A, Duchateau P, Paques F (2012) Chromosomal context and epigenetic mechanisms control the efficacy of genome editing by rare-cutting designer endonucleases. Nucleic Acids Res 40:6367–6379

    CAS  PubMed Central  PubMed  Google Scholar 

  • Davis D, Stokoe D (2010) Zinc finger nucleases as tools to understand and treat human diseases. BMC Med 8:42

    PubMed Central  PubMed  Google Scholar 

  • Delenda C (2004) Lentiviral vectors: optimization of packaging, transduction and gene expression. J Gene Med 6(Suppl 1):S125–S138

    CAS  PubMed  Google Scholar 

  • Deng D, Yan C, Pan X, Mahfouz M, Wang J, Zhu JK, Shi Y, Yan N (2012) Structural basis for sequence-specific recognition of DNA by TAL effectors. Science 335:720–723

    CAS  PubMed Central  PubMed  Google Scholar 

  • Donoho G, Jasin M, Berg P (1998) Analysis of gene targeting and intrachromosomal homologous recombination stimulated by genomic double-strand breaks in mouse embryonic stem cells. Mol Cell Biol 18:4070–4078

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dorai H, Corisdeo S, Ellis D, Kinney C, Chomo M, Hawley-Nelson P, Moore G, Betenbaugh MJ, Ganguly S (2012) Early prediction of instability of Chinese hamster ovary cell lines expressing recombinant antibodies and antibody-fusion proteins. Biotechnol Bioeng 109:1016–1030

    CAS  PubMed  Google Scholar 

  • Doyle EL, Booher NJ, Standage DS, Voytas DF, Brendel VP, Vandyk JK, Bogdanove AJ (2012) TAL Effector-Nucleotide Targeter (TALE-NT) 2.0: tools for TAL effector design and target prediction. Nucleic Acids Res 40:W117–W122

    CAS  PubMed Central  PubMed  Google Scholar 

  • Doyon Y, Vo TD, Mendel MC, Greenberg SG, Wang J, Xia DF, Miller JC, Urnov FD, Gregory PD, Holmes MC (2011) Enhancing zinc-finger-nuclease activity with improved obligate heterodimeric architectures. Nat Methods 8:74–79

    CAS  PubMed  Google Scholar 

  • Fenina M, Simon-Chazottes D, Vandormael-Pournin S, Soueid J, Langa F, Cohen-Tannoudji M, Bernard BA, Panthier JJ (2012) I-SceI-mediated double-strand break does not increase the frequency of homologous recombination at the Dct locus in mouse embryonic stem cells. PLoS One 7:e39895

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fu Y, Foden JA, Khayter C, Maeder ML, Reyon D, Joung JK, Sander JD (2013) High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat Biotechnol 31:822–826

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gabriel R, Lombardo A, Arens A, Miller JC, Genovese P, Kaeppel C, Nowrouzi A, Bartholomae CC, Wang J, Friedman G, Holmes MC, Gregory PD, Glimm H, Schmidt M, Naldini L, Von Kalle C (2011) An unbiased genome-wide analysis of zinc-finger nuclease specificity. Nat Biotechnol 29:816–823

    CAS  PubMed  Google Scholar 

  • Gaj T, Guo J, Kato Y, Sirk SJ, Barbas CF 3rd (2012) Targeted gene knockout by direct delivery of zinc-finger nuclease proteins. Nat Methods 9:805–807

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gama-Norton L, Herrmann S, Schucht R, Coroadinha AS, Low R, Alves PM, Bartholomae CC, Schmidt M, Baum C, Schambach A, Hauser H, Wirth D (2010) Retroviral vector performance in defined chromosomal Loci of modular packaging cell lines. Hum Gene Ther 21:979–991

    CAS  PubMed  Google Scholar 

  • Gama-Norton L, Botezatu L, Herrmann S, Schweizer M, Alves PM, Hauser H, Wirth D (2011) Lentivirus production is influenced by SV40 large T-antigen and chromosomal integration of the vector in HEK293 cells. Hum Gene Ther 22:1269–1279

    CAS  PubMed  Google Scholar 

  • Geisse S, Voedisch B (2012) Transient expression technologies: past, present, and future. Methods Mol Biol 899:203–219

    CAS  PubMed  Google Scholar 

  • Guo J, Gaj T, Barbas CF 3rd (2010) Directed evolution of an enhanced and highly efficient FokI cleavage domain for zinc finger nucleases. J Mol Biol 400:96–107

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hagedorn C, Wong SP, Harbottle R, Lipps HJ (2011) Scaffold/matrix attached region-based nonviral episomal vectors. Hum Gene Ther 22:915–923

    CAS  PubMed  Google Scholar 

  • Hasty P, Rivera-Perez J, Bradley A (1991) The length of homology required for gene targeting in embryonic stem cells. Mol Cell Biol 11:5586–5591

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hockemeyer D, Soldner F, Beard C, Gao Q, Mitalipova M, Dekelver RC, Katibah GE, Amora R, Boydston EA, Zeitler B, Meng X, Miller JC, Zhang L, Rebar EJ, Gregory PD, Urnov FD, Jaenisch R (2009) Efficient targeting of expressed and silent genes in human ESCs and iPSCs using zinc-finger nucleases. Nat Biotechnol 27:851–857

    CAS  PubMed Central  PubMed  Google Scholar 

  • Horvath P, Barrangou R (2010) CRISPR/Cas, the immune system of bacteria and archaea. Science 327:167–170

    CAS  PubMed  Google Scholar 

  • Huang Y, Li Y, Wang YG, Gu X, Wang Y, Shen BF (2007) An efficient and targeted gene integration system for high-level antibody expression. J Immunol Methods 322:28–39

    CAS  PubMed  Google Scholar 

  • Ivics Z, Izsvak Z (2011) Nonviral gene delivery with the sleeping beauty transposon system. Hum Gene Ther 22:1043–1051

    CAS  PubMed  Google Scholar 

  • Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821

    CAS  PubMed  Google Scholar 

  • Kaufman WL, Kocman I, Agrawal V, Rahn HP, Besser D, Gossen M (2008) Homogeneity and persistence of transgene expression by omitting antibiotic selection in cell line isolation. Nucleic Acids Res 36:e111

    PubMed Central  PubMed  Google Scholar 

  • Kawabe Y, Makitsubo H, Kameyama Y, Huang S, Ito A, Kamihira M (2012) Repeated integration of antibody genes into a pre-selected chromosomal locus of CHO cells using an accumulative site-specific gene integration system. Cytotechnology 64:267–279

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kim MS, Lee GM (2008) Use of Flp-mediated cassette exchange in the development of a CHO cell line stably producing erythropoietin. J Microbiol Biotechnol 18:1342–1351

    CAS  PubMed  Google Scholar 

  • Kim M, O’callaghan PM, Droms KA, James DC (2011) A mechanistic understanding of production instability in CHO cell lines expressing recombinant monoclonal antibodies. Biotechnol Bioeng 108:2434–2446

    CAS  PubMed  Google Scholar 

  • Kim E, Kim S, Kim DH, Choi BS, Choi IY, Kim JS (2012) Precision genome engineering with programmable DNA-nicking enzymes. Genome Res 22:1327–1333

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kito M, Itami S, Fukano Y, Yamana K, Shibui T (2002) Construction of engineered CHO strains for high-level production of recombinant proteins. Appl Microbiol Biotechnol 60:442–448

    CAS  PubMed  Google Scholar 

  • Lewis NE, Liu X, Li Y, Nagarajan H, Yerganian G, O'Brien E, Bordbar A, Roth AM, Rosenbloom J, Bian C, Xie M, Chen W, Li N, Baycin-Hizal D, Latif H, Forster J, Betenbaugh MJ, Famili I, Xu X, Wang J, Palsson BO (2013) Genomic landscapes of Chinese hamster ovary cell lines as revealed by the Cricetulus griseus draft genome. Nat Biotechnol 31: 759–765

    CAS  PubMed  Google Scholar 

  • Li Y, Moore R, Guinn M, Bleris L (2012) Transcription activator-like effector hybrids for conditional control and rewiring of chromosomal transgene expression. Sci Rep 2:897

    PubMed Central  PubMed  Google Scholar 

  • Liu PQ, Chan EM, Cost GJ, Zhang L, Wang J, Miller JC, Guschin DY, Reik A, Holmes MC, Mott JE, Collingwood TN, Gregory PD (2010) Generation of a triple-gene knockout mammalian cell line using engineered zinc-finger nucleases. Biotechnol Bioeng 106:97–105

    CAS  PubMed  Google Scholar 

  • Lufino MM, Edser PA, Wade-Martins R (2008) Advances in high-capacity extrachromosomal vector technology: episomal maintenance, vector delivery, and transgene expression. Mol Ther 16:1525–1538

    CAS  PubMed  Google Scholar 

  • Mahfouz MM, Li L, Shamimuzzaman M, Wibowo A, Fang X, Zhu JK (2011) De novo-engineered transcription activator-like effector (TALE) hybrid nuclease with novel DNA binding specificity creates double-strand breaks. Proc Natl Acad Sci U S A 108:2623–2628

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mali P, Yang L, Esvelt KM, Aach J, Guell M, Dicarlo JE, Norville JE, Church GM (2013) RNA-guided human genome engineering via Cas9. Science 339:823–826

    CAS  PubMed Central  PubMed  Google Scholar 

  • Malphettes L, Freyvert Y, Chang J, Liu PQ, Chan E, Miller JC, Zhou Z, Nguyen T, Tsai C, Snowden AW, Collingwood TN, Gregory PD, Cost GJ (2010) Highly efficient deletion of FUT8 in CHO cell lines using zinc-finger nucleases yields cells that produce completely nonfucosylated antibodies. Biotechnol Bioeng 106:774–783

    CAS  PubMed  Google Scholar 

  • Matrai J, Chuah MK, Vandendriessche T (2010) Recent advances in lentiviral vector development and applications. Mol Ther 18:477–490

    CAS  PubMed Central  PubMed  Google Scholar 

  • Miller DG, Wang PR, Petek LM, Hirata RK, Sands MS, Russell DW (2006) Gene targeting in vivo by adeno-associated virus vectors. Nat Biotechnol 24:1022–1026

    CAS  PubMed  Google Scholar 

  • Miller JC, Holmes MC, Wang J, Guschin DY, Lee YL, Rupniewski I, Beausejour CM, Waite AJ, Wang NS, Kim KA, Gregory PD, Pabo CO, Rebar EJ (2007) An improved zinc-finger nuclease architecture for highly specific genome editing. Nat Biotechnol 25:778–785

    CAS  PubMed  Google Scholar 

  • Mitchell RS, Beitzel BF, Schroder AR, Shinn P, Chen H, Berry CC, Ecker JR, Bushman FD (2004) Retroviral DNA integration: ASLV, HIV, and MLV show distinct target site preferences. PLoS Biol 2:E234

    PubMed Central  PubMed  Google Scholar 

  • Mizuguchi H, Hosono T, Hayakawa T (2000) Long-term replication of Epstein-Barr virus-derived episomal vectors in the rodent cells. FEBS Lett 472:173–178

    CAS  PubMed  Google Scholar 

  • Moreno R, Martinez I, Petriz J, Gonzalez JR, Gratacos E, Aran JM (2009) Boundary sequences stabilize transgene expression from subtle position effects in retroviral vectors. Blood Cells Mol Dis 43:214–220

    CAS  PubMed  Google Scholar 

  • Moscou MJ, Bogdanove AJ (2009) A simple cipher governs DNA recognition by TAL effectors. Science 326:1501

    CAS  PubMed  Google Scholar 

  • Muyrers JP, Zhang Y, Benes V, Testa G, Ansorge W, Stewart AF (2000) Point mutation of bacterial artificial chromosomes by ET recombination. EMBO Rep 1:239–243

    CAS  PubMed Central  PubMed  Google Scholar 

  • Narayanan K, Chen Q (2011) Bacterial artificial chromosome mutagenesis using recombineering. J Biomed Biotechnol 2011:971296

    PubMed Central  PubMed  Google Scholar 

  • Nehlsen K, Schucht R, Da Gama-Norton L, Kromer W, Baer A, Cayli A, Hauser H, Wirth D (2009) Recombinant protein expression by targeting pre-selected chromosomal loci. BMC Biotechnol 9:100

    PubMed Central  PubMed  Google Scholar 

  • Nehlsen K, Da Gama-Norton L, Schucht R, Hauser H, Wirth D (2011) Towards rational engineering of cells: recombinant gene expression in defined chromosomal loci. BMC Proc 5(Suppl 8):O6

    PubMed Central  Google Scholar 

  • Nunez E, Fu XD, Rosenfeld MG (2009) Nuclear organization in the 3D space of the nucleus – cause or consequence? Curr Opin Genet Dev 19:424–436

    CAS  PubMed Central  PubMed  Google Scholar 

  • Omasa T, Onitsuka M, Kim WD (2010) Cell engineering and cultivation of Chinese hamster ovary (CHO) cells. Curr Pharm Biotechnol 11:233–240

    CAS  PubMed  Google Scholar 

  • Papapetrou EP, Ziros PG, Micheva ID, Zoumbos NC, Athanassiadou A (2006) Gene transfer into human hematopoietic progenitor cells with an episomal vector carrying an S/MAR element. Gene Ther 13:40–51

    CAS  PubMed  Google Scholar 

  • Papapetrou EP, Lee G, Malani N, Setty M, Riviere I, Tirunagari LM, Kadota K, Roth SL, Giardina P, Viale A, Leslie C, Bushman FD, Studer L, Sadelain M (2011) Genomic safe harbors permit high beta-globin transgene expression in thalassemia induced pluripotent stem cells. Nat Biotechnol 29:73–78

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pattanayak V, Ramirez CL, Joung JK, Liu DR (2011) Revealing off-target cleavage specificities of zinc-finger nucleases by in vitro selection. Nat Methods 8:765–770

    CAS  PubMed Central  PubMed  Google Scholar 

  • Piechaczek C, Fetzer C, Baiker A, Bode J, Lipps HJ (1999) A vector based on the SV40 origin of replication and chromosomal S/MARs replicates episomally in CHO cells. Nucleic Acids Res 27:426–428

    CAS  PubMed Central  PubMed  Google Scholar 

  • Porteus M (2007) Using homologous recombination to manipulate the genome of human somatic cells. Biotechnol Genet Eng Rev 24:195–212

    CAS  PubMed  Google Scholar 

  • Porteus MH, Baltimore D (2003) Chimeric nucleases stimulate gene targeting in human cells. Science 300:763

    PubMed  Google Scholar 

  • Preuss E, Treschow A, Newrzela S, Brucher D, Weber K, Felldin U, Alici E, Gahrton G, Von Laer D, Dilber MS, Fehse B (2010) TK.007: a novel, codon-optimized HSVtk(A168H) mutant for suicide gene therapy. Hum Gene Ther 21:929–941

    CAS  PubMed  Google Scholar 

  • Pruett-Miller SM, Reading DW, Porter SN, Porteus MH (2009) Attenuation of zinc finger nuclease toxicity by small-molecule regulation of protein levels. PLoS Genet 5:e1000376

    PubMed Central  PubMed  Google Scholar 

  • Ramirez CL, Certo MT, Mussolino C, Goodwin MJ, Cradick TJ, Mccaffrey AP, Cathomen T, Scharenberg AM, Joung JK (2012) Engineered zinc finger nickases induce homology-directed repair with reduced mutagenic effects. Nucleic Acids Res 40:5560–5568

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rebar EJ, Pabo CO (1994) Zinc finger phage: affinity selection of fingers with new DNA-binding specificities. Science 263:671–673

    CAS  PubMed  Google Scholar 

  • Rosen LE, Morrison HA, Masri S, Brown MJ, Springstubb B, Sussman D, Stoddard BL, Seligman LM (2006) Homing endonuclease I-CreI derivatives with novel DNA target specificities. Nucleic Acids Res 34:4791–4800

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rouet P, Smih F, Jasin M (1994) Introduction of double-strand breaks into the genome of mouse cells by expression of a rare-cutting endonuclease. Mol Cell Biol 14:8096–8106

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sadelain M, Papapetrou EP, Bushman FD (2012) Safe harbours for the integration of new DNA in the human genome. Nat Rev Cancer 12:51–58

    CAS  Google Scholar 

  • Sandhu U, Cebula M, Behme S, Riemer P, Wodarczyk C, Metzger D, Reimann J, Schirmbeck R, Hauser H, Wirth D (2011) Strict control of transgene expression in a mouse model for sensitive biological applications based on RMCE compatible ES cells. Nucleic Acids Res 39:e1

    CAS  PubMed Central  PubMed  Google Scholar 

  • Santiago Y, Chan E, Liu PQ, Orlando S, Zhang L, Urnov FD, Holmes MC, Guschin D, Waite A, Miller JC, Rebar EJ, Gregory PD, Klug A, Collingwood TN (2008) Targeted gene knockout in mammalian cells by using engineered zinc-finger nucleases. Proc Natl Acad Sci U S A 105:5809–5814

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schnutgen F (2006) Generation of multipurpose alleles for the functional analysis of the mouse genome. Brief Funct Genomic Proteomic 5:15–18

    PubMed  Google Scholar 

  • Schnutgen F, Stewart AF, Von Melchner H, Anastassiadis K (2006) Engineering embryonic stem cells with recombinase systems. Methods Enzymol 420:100–136

    PubMed  Google Scholar 

  • Schucht R, Coroadinha AS, Zanta-Boussif MA, Verhoeyen E, Carrondo MJ, Hauser H, Wirth D (2006) A new generation of retroviral producer cells: predictable and stable virus production by Flp-mediated site-specific integration of retroviral vectors. Mol Ther 14:285–292

    CAS  PubMed  Google Scholar 

  • Schucht R, Lydford S, Andzinski L, Zauers J, Cooper J, Hauser H, Wirth D, May T (2011) Rapid establishment of G-protein-coupled receptor-expressing cell lines by site-specific integration. J Biomol Screen 16:323–331

    CAS  PubMed  Google Scholar 

  • Sealover NR, Davis AM, Brooks JK, George HJ, Kayser KJ, Lin N (2013) Engineering Chinese hamster ovary (CHO) cells for producing recombinant proteins with simple glycoforms by zinc-finger nuclease (ZFN)-mediated gene knockout of mannosyl (alpha-1,3-)-glycoprotein beta-1,2-N-acetylglucosaminyltransferase (Mgat1). J Biotechnol 167:24–32

    CAS  PubMed  Google Scholar 

  • Sedivy JM, Sharp PA (1989) Positive genetic selection for gene disruption in mammalian cells by homologous recombination. Proc Natl Acad Sci U S A 86:227–231

    CAS  PubMed Central  PubMed  Google Scholar 

  • Segal DJ, Meckler JF (2013) Genome engineering at the dawn of the golden age. Annu Rev Genomics Hum Genet 14:135–158

    CAS  PubMed  Google Scholar 

  • Seligman LM, Chisholm KM, Chevalier BS, Chadsey MS, Edwards ST, Savage JH, Veillet AL (2002) Mutations altering the cleavage specificity of a homing endonuclease. Nucleic Acids Res 30:3870–3879

    CAS  PubMed Central  PubMed  Google Scholar 

  • Spitzer J, Landthaler M, Tuschl T (2013) Rapid creation of stable mammalian cell lines for regulated expression of proteins using the Gateway(R) recombination cloning technology and Flp-In T-REx(R) lines. Methods Enzymol 529:99–124

    CAS  PubMed  Google Scholar 

  • Stehle IM, Postberg J, Rupprecht S, Cremer T, Jackson DA, Lipps HJ (2007) Establishment and mitotic stability of an extra-chromosomal mammalian replicon. BMC Cell Biol 8:33

    PubMed Central  PubMed  Google Scholar 

  • Szczepek M, Brondani V, Buchel J, Serrano L, Segal DJ, Cathomen T (2007) Structure-based redesign of the dimerization interface reduces the toxicity of zinc-finger nucleases. Nat Biotechnol 25:786–793

    CAS  PubMed  Google Scholar 

  • Tchorz JS, Suply T, Ksiazek I, Giachino C, Cloetta D, Danzer CP, Doll T, Isken A, Lemaistre M, Taylor V, Bettler B, Kinzel B, Mueller M (2012) A modified RMCE-compatible Rosa26 locus for the expression of transgenes from exogenous promoters. PLoS One 7:e30011

    CAS  PubMed Central  PubMed  Google Scholar 

  • Te Riele H, Maandag ER, Berns A (1992) Highly efficient gene targeting in embryonic stem cells through homologous recombination with isogenic DNA constructs. Proc Natl Acad Sci U S A 89:5128–5132

    Google Scholar 

  • Templeton NS, Roberts DD, Safer B (1997) Efficient gene targeting in mouse embryonic stem cells. Gene Ther 4:700–709

    CAS  PubMed  Google Scholar 

  • Thomas KR, Capecchi MR (1987) Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells. Cell 51:503–512

    CAS  PubMed  Google Scholar 

  • Thomas BJ, Rothstein R (1989) Elevated recombination rates in transcriptionally active DNA. Cell 56:619–630

    CAS  PubMed  Google Scholar 

  • Thomason L, Court DL, Bubunenko M, Costantino N, Wilson H, Datta S, Oppenheim A (2007) Recombineering: genetic engineering in bacteria using homologous recombination. Curr Protoc Mol Biol. Chapter 1:Unit 1.16

    Google Scholar 

  • Tichy ED, Pillai R, Deng L, Liang L, Tischfield J, Schwemberger SJ, Babcock GF, Stambrook PJ (2010) Mouse embryonic stem cells, but not somatic cells, predominantly use homologous recombination to repair double-strand DNA breaks. Stem Cells Dev 19:1699–1711

    CAS  PubMed Central  PubMed  Google Scholar 

  • Turan S, Galla M, Ernst E, Qiao J, Voelkel C, Schiedlmeier B, Zehe C, Bode J (2011) Recombinase-mediated cassette exchange (RMCE): traditional concepts and current challenges. J Mol Biol 407:193–221

    CAS  PubMed  Google Scholar 

  • Turan S, Zehe C, Kuehle J, Qiao J, Bode J (2013) Recombinase-mediated cassette exchange (RMCE) – a rapidly-expanding toolbox for targeted genomic modifications. Gene 515:1–27

    CAS  PubMed  Google Scholar 

  • Urnov FD, Rebar EJ, Holmes MC, Zhang HS, Gregory PD (2010) Genome editing with engineered zinc finger nucleases. Nat Rev Genet 11:636–646

    CAS  PubMed  Google Scholar 

  • Verhoeyen E, Hauser H, Wirth D (2001) Evaluation of retroviral vector design in defined chromosomal loci by Flp-mediated cassette replacement. Hum Gene Ther 12:933–944

    CAS  PubMed  Google Scholar 

  • Wang J, Friedman G, Doyon Y, Wang NS, Li CJ, Miller JC, Hua KL, Yan JJ, Babiarz JE, Gregory PD, Holmes MC (2012) Targeted gene addition to a predetermined site in the human genome using a ZFN-based nicking enzyme. Genome Res 22:1316–1326

    PubMed Central  PubMed  Google Scholar 

  • Wang H, Yang H, Shivalila CS, Dawlaty MM, Cheng AW, Zhang F, Jaenisch R (2013) One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell 153:910–918

    CAS  PubMed Central  PubMed  Google Scholar 

  • Warming S, Costantino N, Court DL, Jenkins NA, Copeland NG (2005) Simple and highly efficient BAC recombineering using galK selection. Nucleic Acids Res 33:e36

    PubMed Central  PubMed  Google Scholar 

  • Wiberg FC, Rasmussen SK, Frandsen TP, Rasmussen LK, Tengbjerg K, Coljee VW, Sharon J, Yang CY, Bregenholt S, Nielsen LS, Haurum JS, Tolstrup AB (2006) Production of target-specific recombinant human polyclonal antibodies in mammalian cells. Biotechnol Bioeng 94:396–405

    CAS  PubMed  Google Scholar 

  • Wilke S, Groebe L, Maffenbeier V, Jager V, Gossen M, Josewski J, Duda A, Polle L, Owens RJ, Wirth D, Heinz DW, Van Den Heuvel J, Bussow K (2011) Streamlining homogeneous glycoprotein production for biophysical and structural applications by targeted cell line development. PLoS One 6:e27829

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wilson KA, Mcewen AE, Pruett-Miller SM, Zhang J, Kildebeck EJ, Porteus MH (2013) Expanding the repertoire of target sites for zinc finger nuclease-mediated genome modification. Mol Ther Nucleic Acids 2:e88

    PubMed Central  PubMed  Google Scholar 

  • Wirth D, Gama-Norton L, Riemer P, Sandhu U, Schucht R, Hauser H (2007) Road to precision: recombinase-based targeting technologies for genome engineering. Curr Opin Biotechnol 18:411–419

    CAS  PubMed  Google Scholar 

  • Wong ET, Kolman JL, Li YC, Mesner LD, Hillen W, Berens C, Wahl GM (2005) Reproducible doxycycline-inducible transgene expression at specific loci generated by Cre-recombinase mediated cassette exchange. Nucleic Acids Res 33:e147

    PubMed Central  PubMed  Google Scholar 

  • Wu X, Li Y, Crise B, Burgess SM (2003) Transcription start regions in the human genome are favored targets for MLV integration. Science 300:1749–1751

    CAS  PubMed  Google Scholar 

  • Wu H, Mao C, Duenstl G, Su W, Qian S (2013) Assay development of inducible human renal phosphate transporter Npt2A (SLC34A1) in Flp-In-Trex-HEK293 cells. Eur J Pharmacol 721:332–340

    CAS  PubMed  Google Scholar 

  • Yant SR, Wu X, Huang Y, Garrison B, Burgess SM, Kay MA (2005) High-resolution genome-wide mapping of transposon integration in mammals. Mol Cell Biol 25:2085–2094

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang Y, Muyrers JP, Rientjes J, Stewart AF (2003) Phage annealing proteins promote oligonucleotide-directed mutagenesis in Escherichia coli and mouse ES cells. BMC Mol Biol 4:1

    PubMed Central  PubMed  Google Scholar 

  • Zhou H, Liu ZG, Sun ZW, Huang Y, Yu WY (2010) Generation of stable cell lines by site-specific integration of transgenes into engineered Chinese hamster ovary strains using an FLP-FRT system. J Biotechnol 147:122–129

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hansjoerg Hauser .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hauser, H. (2015). Cell Line Development. In: Al-Rubeai, M. (eds) Animal Cell Culture. Cell Engineering, vol 9. Springer, Cham. https://doi.org/10.1007/978-3-319-10320-4_1

Download citation

Publish with us

Policies and ethics