Skip to main content

Green Multi-homing RF Architectures

  • Chapter
  • First Online:
Energy Efficient Smart Phones for 5G Networks

Abstract

Next generation handsets will need to be energy aware so as to support 5G services, that are likely to be intelligent and bandwidth hungry, as well as support multi-mode operation (LTE, LTE+, HSDPA, 3G, WiFi among others) in Heterogeneous Networking (HetNet) environment. This vision gives way to stringent design requirements on the RF system design that in today’s handset is a key consumer of power. This vision provides the impetus for new research lines that will encompass techniques and the implementation of functional entities so as minimize the carbon footprint in mobile 5G handsets. The performance of the future handset transceiver depends primarily on the performance of antennae and RF circuit designs. The future handset requires the transceiver to operate efficiently and to be reconfigurable. The current chapter and the sequel present a comprehensive study of new hardware components that can provide a flexible and energy efficient multi-standard transceivers architecture, with proof-of-concept validation for specific use-cases including LTE, TETRA and TETRAPOL. This chapter addresses the global transceiver architecture design in next generation handsets and the antenna front end unit, that is bridged to the RF front end with tunable matching network to provide an adaptive response for maximum power transfer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wong, A., Kathiresan, G., Chan, C., et al.: A 1 V wireless transceiver for an ultra-low-power SoC for biotelemetry applications. IEEE J. Solid-State Circuits 43(7), 1511 (2008)

    Article  Google Scholar 

  2. Quinlan, P., Crowley, P., Chanca, M., et al.: A multimode 0.3–200-kb/s transceiver for the 433/868/915-MHz bands in 0.25-_m CMOS. IEEE J. Solid-State Circuits 39(12), 2297 (2004)

    Google Scholar 

  3. Qi, Z., Kuang, X., Wu, N.: An ultra-low-power RF transceiver for WBANs in medical applications. J. Semiconductors 32(6), 065008 (2011)

    Article  Google Scholar 

  4. Peiris, V., Arm, C., Bories, S., et al.: A 1 V 433/868 MHz 25 kb/s-FSK 2 kb/s-OOK RF transceiver SoC in standard digital 0.18 _m CMOS. IEEE ISSCC Digest of Technical Papers, vol. 48, p. 258 (2005)

    Google Scholar 

  5. Guofeng, L., Nanjian, W.: A low power flexible PGA for software defined radio systems. J. Semiconductors 33(5), 055006 (2012)

    Google Scholar 

  6. Telecommunications Industry Association: APCO Project 25 System and Standards Definition. Telecommunications Industry Association, Arlington, TIA/EIA-102.A (1995)

    Google Scholar 

  7. Telecommunications Industry Association: Project 25 FDMA Common Air Interface New Technology Standards Project Digital Radio Technical Standards. Telecommunications Industry Association, Arlington, TIA/EIA-102.BAAA (1998)

    Google Scholar 

  8. Cayla, G.: TETRA: the new digital professional mobile radio. In: Proceedings of 5th Seminar on Digital Mobile Radio Communications, pp. 113–118 (1992)

    Google Scholar 

  9. http://www.tetrapol.com/

  10. Skrivervik, A.K., Zurcher, J.-F., Staub, O., Mosig, J.R.: PCS antenna design: the challenge of miniaturization. IEEE Antennas Propag. Mag. 43, 12–27 (2001)

    Article  Google Scholar 

  11. Lee, C.S., Tseng, K.-H.: Size reduction of microstrip antennas. Electron. Lett. 37, 1274–1275 (2001)

    Article  Google Scholar 

  12. Shackelford, A.K., Lee, K.F., Luck, K.M.: Design of small-size wide bandwidth Microstrip patch antennas. IEEE Antennas Propag. Mag. 45, 75–83 (2003)

    Article  Google Scholar 

  13. Deshmukh, A.A., Kumar, G.: Half U-slot loaded rectangular microstrip antenna. In: IEEE Antennas Propagation Society International Symposium, vol. 2, pp. 876–879, Columbus OH (2003)

    Google Scholar 

  14. Chair, R., Mak, C.-L., Lee, K.-F., Luk, K.-M., Kishk, A.A.: Miniature wide-band half U-slot and half E-shaped patch antennas. IEEE Trans. Antennas Propagat. 53, 2645–2651 (2008)

    Article  Google Scholar 

  15. Guo, L., Wang, S., Chen, X., Parini, C.: Miniaturised antennas for UWB communications. In: Proceedings of the European Conference on Antennas and Propagation, pp. 3774–3778. Berlin, Germany, 23–27 Mar 2009

    Google Scholar 

  16. Gianvittorio, J.P., Rahmat-Samii, Y.: Fractal antennas: a novel antenna miniaturization technique, and applications. IEEE Antennas Propag. Mag. 44(1), 20–36 (2002)

    Article  Google Scholar 

  17. Byndas, A., Hossa, R., Bialkowski, M.E., Kabacik, P.: Investigation into operation of single and multi-layer configurations of planar inverted-F antenna. IEEE Antenna Propag. Mag. 49(4), 22–33 (2007)

    Article  Google Scholar 

  18. Razali, A.R., Bialkowski, M.E., Tsai, F.-C.E.: Multi-band planar inverted-F antenna with microstripline coupling to open-end ground slots. In: Proceedings of Asia Pacific Microwave Conference, pp. 2471–2474, Dec 2009

    Google Scholar 

  19. Razali, A.R., Bialkowski, M.E.: Coplanar inverted-F antenna with open-end ground slots for multi-band operation. IEEE Antenna Wirel. Propag. Lett. 8, 1029–1032 (2009)

    Article  Google Scholar 

  20. Hossa, R., Byndas, A., Bialkowski, M.E.: Improvement of compact terminal antenna performance by incorporating open-end slots in ground plane. IEEE Microw. Wirel. Compon. Lett. 14(6), 283–285 (2004)

    Article  Google Scholar 

  21. Alam, M.S., Islam, M.T., Misran, N.: A novel compact split ring slotted electromagnetic bandgap structure for microstrip patch antenna performance enhancement. Prog Electromagnet. Res 130, 389–409 (2012)

    Article  Google Scholar 

  22. Yu, A., Yang, F., Elsherbeni, A. Z.: A dual band circularly polarized ring antenna based on composite right and left handed metamaterial. Prog Electromagnet. Res 78, 73–81 (2008)

    Google Scholar 

  23. Sayem, A.T.M., Ali, M.: Characteristics of a microstrip-fed miniature printed Hilbert slot antenna. Prog Electromagnet. Res 56, 1–18, (2006)

    Google Scholar 

  24. Niamien, M.A.C., Dussopt, L., Delaveaud, C.: A Compact dual-band notch antenna for wireless multi-standard terminals. IEEE Antennas Wirel. Propag. Lett. 11, 877–880 (2012)

    Article  Google Scholar 

  25. Karimullah, K., Nyquist, D., Chen, K.: Interaction of thin wire antennas with conducting, polarizable bodies—theory and experiment. In: Proceedings of IEEE International Symposium on Antennas and Propagation Society (APS ’78), vol. 16, pp. 219–222. College Park, Md, USA, May 1978

    Google Scholar 

  26. Norklit, O., Teal, P.D., Vaughan, R.G.: Measurement and evaluation of multi-antenna handsets in indoor mobile communication. IEEE Trans. Antennas Propag. 49(3), 429–437 (2001)

    Article  Google Scholar 

  27. Jensen, M.A., Rahmat-Samii, Y.: Performance analysis of antennas for hand-held transceivers using FDTD. IEEE Trans. Antennas Propag. 42(8), 1106–1113 (1994)

    Article  Google Scholar 

  28. Toftgard, J., Hornsleth, S.N., Andersen, J.B.: Effects on portable antennas of the presence of a person. IEEE Trans. Antennas Propag. 41(6), 739–746 (1993)

    Article  Google Scholar 

  29. de Mingo, J., Valdovinos, A., Crespo, A., Navarro, D., Garcia, P.: An RF electronically controlled impedance tuning network design and its application to an antenna input impedance automatic matching system. IEEE Trans. Microw. Theory Tech. 52(2), 489–497 (2004)

    Article  Google Scholar 

  30. Vicki Chen, L.-Y., Forse, R., Chase, D., York, R. A.: Analogtunable matching network using integrated thin-film BST capacitors. In: IEEE MTT-S International Microwave Symposium Digest, vol. 1, pp. 261–264. FortWorth, Tex, USA, June 2004

    Google Scholar 

  31. Moritz, J.R., Sun, Y.: Frequency agile antenna tuning and matching. In: Proceedings of 8th International Conference on HF Radio Systems and Techniques (IEE Conf. Publ. No. 474), pp. 169–174. Guildford, UK, July 2000

    Google Scholar 

  32. Leenaerts, D.M.W.: Low power RF IC design for wireless communication. In: Proceedings of International Symposium on Low Power Electronics and Design, pp. 428–433. Seoul, Korea, Aug 2003

    Google Scholar 

  33. Abidi, A.A.: Low-power radio-frequency IC’s for portable communications. Proc. IEEE 83(4), 544–569 (1995)

    Article  Google Scholar 

  34. Van Bezooijen, A.: Antenna tuner for hand-sets. In: Proceedings of Advancements in Front End Modules for Mobile and Wireless Applications workshop, 2012 IEEE MTT-S Int. Microwave Symposium, June 2012

    Google Scholar 

  35. Boyle, K.R., Spits, E., de Jongh, M.A., Sato, S., Bakker, T., Van Bezooijen, A.: A self-contained adaptive antenna tuner for mobile phones. In: Proceedings of 6th European Conference on Antennas and Propagation (EuCAP 2012), pp. 1804–1808, Mar 2012

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abubakar Sadiq Hussaini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hussaini, A.S. et al. (2015). Green Multi-homing RF Architectures. In: Radwan, A., Rodriguez, J. (eds) Energy Efficient Smart Phones for 5G Networks. Signals and Communication Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-10314-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-10314-3_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-10313-6

  • Online ISBN: 978-3-319-10314-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics