Advertisement

Green Multi-homing RF Architectures

  • Abubakar Sadiq HussainiEmail author
  • Issa Elfergani
  • Ayman Radwan
  • Jonathan Rodriguez
  • Laurent Dussopt
  • Alexandre Giry
  • Michael Pelissier
  • Sami Aissa
  • Frederic Fraysse
  • Dany Lenox
Chapter
  • 1.4k Downloads
Part of the Signals and Communication Technology book series (SCT)

Abstract

Next generation handsets will need to be energy aware so as to support 5G services, that are likely to be intelligent and bandwidth hungry, as well as support multi-mode operation (LTE, LTE+, HSDPA, 3G, WiFi among others) in Heterogeneous Networking (HetNet) environment. This vision gives way to stringent design requirements on the RF system design that in today’s handset is a key consumer of power. This vision provides the impetus for new research lines that will encompass techniques and the implementation of functional entities so as minimize the carbon footprint in mobile 5G handsets. The performance of the future handset transceiver depends primarily on the performance of antennae and RF circuit designs. The future handset requires the transceiver to operate efficiently and to be reconfigurable. The current chapter and the sequel present a comprehensive study of new hardware components that can provide a flexible and energy efficient multi-standard transceivers architecture, with proof-of-concept validation for specific use-cases including LTE, TETRA and TETRAPOL. This chapter addresses the global transceiver architecture design in next generation handsets and the antenna front end unit, that is bridged to the RF front end with tunable matching network to provide an adaptive response for maximum power transfer.

Keywords

Reflection Coefficient Phase Noise Insertion Loss Phase Lock Loop Voltage Control Oscillator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Wong, A., Kathiresan, G., Chan, C., et al.: A 1 V wireless transceiver for an ultra-low-power SoC for biotelemetry applications. IEEE J. Solid-State Circuits 43(7), 1511 (2008)CrossRefGoogle Scholar
  2. 2.
    Quinlan, P., Crowley, P., Chanca, M., et al.: A multimode 0.3–200-kb/s transceiver for the 433/868/915-MHz bands in 0.25-_m CMOS. IEEE J. Solid-State Circuits 39(12), 2297 (2004)Google Scholar
  3. 3.
    Qi, Z., Kuang, X., Wu, N.: An ultra-low-power RF transceiver for WBANs in medical applications. J. Semiconductors 32(6), 065008 (2011)CrossRefGoogle Scholar
  4. 4.
    Peiris, V., Arm, C., Bories, S., et al.: A 1 V 433/868 MHz 25 kb/s-FSK 2 kb/s-OOK RF transceiver SoC in standard digital 0.18 _m CMOS. IEEE ISSCC Digest of Technical Papers, vol. 48, p. 258 (2005)Google Scholar
  5. 5.
    Guofeng, L., Nanjian, W.: A low power flexible PGA for software defined radio systems. J. Semiconductors 33(5), 055006 (2012)Google Scholar
  6. 6.
    Telecommunications Industry Association: APCO Project 25 System and Standards Definition. Telecommunications Industry Association, Arlington, TIA/EIA-102.A (1995)Google Scholar
  7. 7.
    Telecommunications Industry Association: Project 25 FDMA Common Air Interface New Technology Standards Project Digital Radio Technical Standards. Telecommunications Industry Association, Arlington, TIA/EIA-102.BAAA (1998)Google Scholar
  8. 8.
    Cayla, G.: TETRA: the new digital professional mobile radio. In: Proceedings of 5th Seminar on Digital Mobile Radio Communications, pp. 113–118 (1992)Google Scholar
  9. 9.
  10. 10.
    Skrivervik, A.K., Zurcher, J.-F., Staub, O., Mosig, J.R.: PCS antenna design: the challenge of miniaturization. IEEE Antennas Propag. Mag. 43, 12–27 (2001)CrossRefGoogle Scholar
  11. 11.
    Lee, C.S., Tseng, K.-H.: Size reduction of microstrip antennas. Electron. Lett. 37, 1274–1275 (2001)CrossRefGoogle Scholar
  12. 12.
    Shackelford, A.K., Lee, K.F., Luck, K.M.: Design of small-size wide bandwidth Microstrip patch antennas. IEEE Antennas Propag. Mag. 45, 75–83 (2003)CrossRefGoogle Scholar
  13. 13.
    Deshmukh, A.A., Kumar, G.: Half U-slot loaded rectangular microstrip antenna. In: IEEE Antennas Propagation Society International Symposium, vol. 2, pp. 876–879, Columbus OH (2003)Google Scholar
  14. 14.
    Chair, R., Mak, C.-L., Lee, K.-F., Luk, K.-M., Kishk, A.A.: Miniature wide-band half U-slot and half E-shaped patch antennas. IEEE Trans. Antennas Propagat. 53, 2645–2651 (2008)CrossRefGoogle Scholar
  15. 15.
    Guo, L., Wang, S., Chen, X., Parini, C.: Miniaturised antennas for UWB communications. In: Proceedings of the European Conference on Antennas and Propagation, pp. 3774–3778. Berlin, Germany, 23–27 Mar 2009Google Scholar
  16. 16.
    Gianvittorio, J.P., Rahmat-Samii, Y.: Fractal antennas: a novel antenna miniaturization technique, and applications. IEEE Antennas Propag. Mag. 44(1), 20–36 (2002)CrossRefGoogle Scholar
  17. 17.
    Byndas, A., Hossa, R., Bialkowski, M.E., Kabacik, P.: Investigation into operation of single and multi-layer configurations of planar inverted-F antenna. IEEE Antenna Propag. Mag. 49(4), 22–33 (2007)CrossRefGoogle Scholar
  18. 18.
    Razali, A.R., Bialkowski, M.E., Tsai, F.-C.E.: Multi-band planar inverted-F antenna with microstripline coupling to open-end ground slots. In: Proceedings of Asia Pacific Microwave Conference, pp. 2471–2474, Dec 2009Google Scholar
  19. 19.
    Razali, A.R., Bialkowski, M.E.: Coplanar inverted-F antenna with open-end ground slots for multi-band operation. IEEE Antenna Wirel. Propag. Lett. 8, 1029–1032 (2009)CrossRefGoogle Scholar
  20. 20.
    Hossa, R., Byndas, A., Bialkowski, M.E.: Improvement of compact terminal antenna performance by incorporating open-end slots in ground plane. IEEE Microw. Wirel. Compon. Lett. 14(6), 283–285 (2004)CrossRefGoogle Scholar
  21. 21.
    Alam, M.S., Islam, M.T., Misran, N.: A novel compact split ring slotted electromagnetic bandgap structure for microstrip patch antenna performance enhancement. Prog Electromagnet. Res 130, 389–409 (2012)CrossRefGoogle Scholar
  22. 22.
    Yu, A., Yang, F., Elsherbeni, A. Z.: A dual band circularly polarized ring antenna based on composite right and left handed metamaterial. Prog Electromagnet. Res 78, 73–81 (2008)Google Scholar
  23. 23.
    Sayem, A.T.M., Ali, M.: Characteristics of a microstrip-fed miniature printed Hilbert slot antenna. Prog Electromagnet. Res 56, 1–18, (2006)Google Scholar
  24. 24.
    Niamien, M.A.C., Dussopt, L., Delaveaud, C.: A Compact dual-band notch antenna for wireless multi-standard terminals. IEEE Antennas Wirel. Propag. Lett. 11, 877–880 (2012)CrossRefGoogle Scholar
  25. 25.
    Karimullah, K., Nyquist, D., Chen, K.: Interaction of thin wire antennas with conducting, polarizable bodies—theory and experiment. In: Proceedings of IEEE International Symposium on Antennas and Propagation Society (APS ’78), vol. 16, pp. 219–222. College Park, Md, USA, May 1978Google Scholar
  26. 26.
    Norklit, O., Teal, P.D., Vaughan, R.G.: Measurement and evaluation of multi-antenna handsets in indoor mobile communication. IEEE Trans. Antennas Propag. 49(3), 429–437 (2001)CrossRefGoogle Scholar
  27. 27.
    Jensen, M.A., Rahmat-Samii, Y.: Performance analysis of antennas for hand-held transceivers using FDTD. IEEE Trans. Antennas Propag. 42(8), 1106–1113 (1994)CrossRefGoogle Scholar
  28. 28.
    Toftgard, J., Hornsleth, S.N., Andersen, J.B.: Effects on portable antennas of the presence of a person. IEEE Trans. Antennas Propag. 41(6), 739–746 (1993)CrossRefGoogle Scholar
  29. 29.
    de Mingo, J., Valdovinos, A., Crespo, A., Navarro, D., Garcia, P.: An RF electronically controlled impedance tuning network design and its application to an antenna input impedance automatic matching system. IEEE Trans. Microw. Theory Tech. 52(2), 489–497 (2004)CrossRefGoogle Scholar
  30. 30.
    Vicki Chen, L.-Y., Forse, R., Chase, D., York, R. A.: Analogtunable matching network using integrated thin-film BST capacitors. In: IEEE MTT-S International Microwave Symposium Digest, vol. 1, pp. 261–264. FortWorth, Tex, USA, June 2004Google Scholar
  31. 31.
    Moritz, J.R., Sun, Y.: Frequency agile antenna tuning and matching. In: Proceedings of 8th International Conference on HF Radio Systems and Techniques (IEE Conf. Publ. No. 474), pp. 169–174. Guildford, UK, July 2000Google Scholar
  32. 32.
    Leenaerts, D.M.W.: Low power RF IC design for wireless communication. In: Proceedings of International Symposium on Low Power Electronics and Design, pp. 428–433. Seoul, Korea, Aug 2003Google Scholar
  33. 33.
    Abidi, A.A.: Low-power radio-frequency IC’s for portable communications. Proc. IEEE 83(4), 544–569 (1995)CrossRefGoogle Scholar
  34. 34.
    Van Bezooijen, A.: Antenna tuner for hand-sets. In: Proceedings of Advancements in Front End Modules for Mobile and Wireless Applications workshop, 2012 IEEE MTT-S Int. Microwave Symposium, June 2012Google Scholar
  35. 35.
    Boyle, K.R., Spits, E., de Jongh, M.A., Sato, S., Bakker, T., Van Bezooijen, A.: A self-contained adaptive antenna tuner for mobile phones. In: Proceedings of 6th European Conference on Antennas and Propagation (EuCAP 2012), pp. 1804–1808, Mar 2012Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Abubakar Sadiq Hussaini
    • 1
    Email author
  • Issa Elfergani
    • 1
  • Ayman Radwan
    • 4
  • Jonathan Rodriguez
    • 4
  • Laurent Dussopt
    • 2
  • Alexandre Giry
    • 2
  • Michael Pelissier
    • 2
  • Sami Aissa
    • 3
  • Frederic Fraysse
    • 3
  • Dany Lenox
    • 3
  1. 1.Instituto de TelecomunicaçõesAveiroPortugal
  2. 2.CEA-LETIGrenobleFrance
  3. 3.CASSIDIANElancourtFrance
  4. 4.Instituto de TelecomunicaçõesCampus Universitário de SantiagoAveiroPortugal

Personalised recommendations