Skip to main content

Boltzmann Equation: A Gas of Grains

  • Chapter
  • First Online:
Transport and Fluctuations in Granular Fluids

Part of the book series: SpringerBriefs in Physics ((SpringerBriefs in Physics))

Abstract

A simple but realistic and rich model for fluidized granular media is the gas of inelastic hard spheres. In this chapter its statistical description is reviewed. A key role is played by the assumption of Molecular-Chaos and by the Boltzmann equation. A comparison with the case of elastic hard spheres is made, pointing out the analogies and the differences. The chapter is concluded with the discussion of the protocols used for energy injection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alder, B.J., Wainwright, T.E.: Phase transition in elastic disks. Phys. Rev. 127, 359 (1962)

    Article  ADS  Google Scholar 

  2. Baldassarri, A.: Marini Bettolo Marconi, U., Puglisi A.: Influence of correlations on the velocity statistics of scalar granular gases. Europhys. Lett. 58, 14 (2002)

    Article  ADS  Google Scholar 

  3. Bena, I., Coppex, F., Droz, M., Visco, P., Trizac, E., van Wijland, F.: Stationary state of a heated granular gas: fate of the usual H-functional. Phys. A 370, 179 (2006)

    Article  Google Scholar 

  4. Ben-Naim, E., Krapivsky, P.L.: Scaling, multiscaling, and nontrivial exponents in inelastic collision processes. Phys. Rev. E 66, 011309 (2002)

    Article  ADS  Google Scholar 

  5. Bernu, B., Mazighi, R.: One-dimensional bounce of inelastically colliding marbles on a wall. J. Phys. A: Math. Gen. 23, 5745 (1990)

    Article  ADS  MATH  Google Scholar 

  6. Blackwell, D., Mauldin, R.D.: Ulam’s redistribution of energy problem: collision transformations. Lett. Math. Phys. 10, 149 (1985)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  7. Bobylev, A.V., Cercignani, C., Gamba, I.M.: Generalized kinetic Maxwell type models of granular gases. In: Mathematical Models of Granular Matter. Lecture Notes in Mathematics 1937, vol 23. Springer, Berlin (2008).

    Google Scholar 

  8. Bobylev, V.: Exact solutions of the nonlinear Boltzmann equation and the theory of relaxation of a maxwellian gas. Teoret. Mat. Fiz. 60, 280 (1984)

    MathSciNet  Google Scholar 

  9. Bobylev, A.V., Carrillo, J.A., Gamba, I.M.: On some properties of kinetic and hydrodynamic equations for inelastic interactions. J. Stat. Phys. 98, 743 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  10. Brilliantov, N.V., Spahn, F., Hertzsch, J.M., Pöschel, T.: Model for collisions in granular gases. Phys. Rev. E 53, 5382 (1996)

    Article  ADS  Google Scholar 

  11. Brilliantov, N.V., Pöschel, T.: Kinetic Theory of Granular Gases. Oxford University Press, Oxford (2004)

    Book  MATH  Google Scholar 

  12. Campbell, C.S., Brennen, C.E.: Computer simulation of granular shear flows. J. Fluid. Mech. 151, 167 (1985)

    Article  ADS  Google Scholar 

  13. Campbell, C.S.: Rapid granular flows. Ann. Rev. Fluid Mech. 22, 57 (1990)

    Article  ADS  Google Scholar 

  14. Carnahan, W.F., Starling, K.E.: Equation of state for nonattracting rigid spheres. J. Chem. Phys. 51, 635 (1969)

    Article  ADS  Google Scholar 

  15. Cercignani, C., Illner, R., Pulvirenti, M.: The Mathematical Theory of Dilute Gases. Springer, Berlin (1994)

    Book  MATH  Google Scholar 

  16. Chapman, S., Cowling, T.G.: The Mathematical Theory of Nonuniform Gases. Cambridge University Press, London (1960)

    Google Scholar 

  17. Clausius, R.: Ueber die mittlere Länge der Wege, welche bei der Molecularbewegung gasförmiger Körper von den einzelnen Molecülen zurückgelegt werden; nebst einigen anderen Bemerkungen über die mechanische Wärmetheorie. Ann. Phys. 181, 239 (1858)

    Google Scholar 

  18. Ernst, M.H., Dorfman, J.R., Hoegy, W.R., van Leeuwen, J.M.J.: Hard-sphere dynamics and binary-collision operators. Physica 45, 127 (1969)

    Article  ADS  Google Scholar 

  19. Ernst, H.: Nonlinear model-Boltzmann equations and exact solutions. Phys. Rep. 78, 1 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  20. Falcioni, M., Vulpiani, A.: Meccanica Statistica Elementare. Springer-Verlag Italia, (2014).

    Google Scholar 

  21. Goldhirsch, I., Zanetti, G.: Clustering instability in dissipative gases. Phys. Rev. Lett. 70, 1619 (1993)

    Article  ADS  Google Scholar 

  22. Goldshtein, A., Shapiro, M.: Mechanics of collisional motion of granular materials. Part 1. General hydrodynamic equations. J. Fluid Mech. 282, 75 (1995)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  23. Gradenigo, G., Sarracino, A., Villamaina, D., Puglisi, A.: Non-equilibrium length in granular fluids: from experiment to fluctuating hydrodynamics. Europhys. Lett. 96, 14004 (2011)

    Article  ADS  Google Scholar 

  24. Haff, P.K.: Grain flow as a fluid-mechanical phenomenon. J. Fluid Mech. 134, 401 (1983)

    Article  ADS  MATH  Google Scholar 

  25. Herrmann, H.J.: Simulation of granular media. Physica A 191, 263 (1992)

    Article  ADS  Google Scholar 

  26. Hertzsch, J.-M., Spahn, F., Brilliantov, N.V.: On low-velocity collisions of viscoelastic particles. J. Phys. II 5, 1725 (1995)

    Google Scholar 

  27. Hopkins, M.A., Louge, M.Y.: Inelastic microstructure in rapid granular flows of smooth disks. Phys. Fluids A 3, 47 (1991)

    Article  ADS  Google Scholar 

  28. Huthmann, M., Zippelius, A.: Dynamics of inelastically colliding rough spheres: relaxation of translational and rotational energy. Phys. Rev. E 56, 6275 (1997)

    Article  ADS  Google Scholar 

  29. Brey, Javier: J., Ruiz-Montero, M.J., Cubero, D.: Homogeneous cooling state of a low-density granular flow. Phys. Rev. E 54, 3664 (1996)

    Article  ADS  Google Scholar 

  30. Brey, Javier: J., Moreno, F., Dufty, J.W.: Model kinetic equation for low-density granular flow. Phys. Rev. E 54, 445 (1996)

    Article  ADS  Google Scholar 

  31. Jenkins, J.T., Richman, M.W.: Kinetic theory for plane shear flows of a dense gas of identical, rough, inelastic, circular disks. Phys. Fluids 28, 3485 (1985)

    Article  ADS  MATH  Google Scholar 

  32. Krook, M., Wu, T.T.: Formation of maxwellian tails. Phys. Rev. Lett. 36, 1107 (1976)

    Article  ADS  Google Scholar 

  33. Kubo, R., Toda, M., Hashitsume, N.: Statistical Physics II. Nonequilibrium Stastical Mechanics. Springer, Berlin (1991)

    Book  MATH  Google Scholar 

  34. Lanford III, O.: The Evolution of Large Classical Systems, vol. 35, p. 1. Springer, Berlin (1975).

    Google Scholar 

  35. Luding, S., Clément, E., Blumen, A., Rajchenbach, J., Duran, J.: Anomalous energy dissipation in molecular dynamics simulations of grains: the “detachment effect”. Phys. Rev. E 50, 4113 (1994)

    Article  ADS  Google Scholar 

  36. Luding, S., Huthmann, M., McNamara, S., Zippelius, A.: Homogeneous cooling of rough dissipative particles: theory and simulations. Phys. Rev. E 58, 3416 (1998)

    Article  ADS  Google Scholar 

  37. Lun, C.K.K., Savage, S.B.: A simple kinetic theory for granular flow of rough, inelastic, spherical particles. J. Appl. Mech. 54, 47 (1987)

    Article  ADS  MATH  Google Scholar 

  38. Lun, C.K.K.: Kinetic theory for granular flow of dense, slightly inelastic, slightly rough spheres. J. Fluid Mech. 233, 539 (1991)

    Article  ADS  MATH  Google Scholar 

  39. Marconi, U.M.B., Puglisi, A., Vulpiani, A.: About an H-theorem for systems with non-conservative interactions. J. Stat. Mech. 8, 2 (2013)

    Google Scholar 

  40. McNamara, S., Young, W.R.: Inelastic collapse and clumping in a one-dimensional granular medium. Phys. Fluids A 4, 496 (1992)

    Article  ADS  Google Scholar 

  41. McNamara, S., Young, W.R.: Inelastic collapse in two dimensions. Phys. Rev. E 50, R28 (1994)

    Article  ADS  Google Scholar 

  42. McNamara, S., Luding, S.: Energy nonequipartition in systems of inelastic, rough spheres. Phys. Rev. E 58, 2247 (1998)

    Article  ADS  Google Scholar 

  43. van Noije, T.P.C., Ernst, M.H.: Velocity distributions in homogeneous granular fluids: the free and the heated case. Granular Matter 1, 57 (1998)

    Article  Google Scholar 

  44. van Noije, T.P.C., Ernst, M.H., Brito, R.: Ring kinetic theory for an idealized granular gas. Physica A 251, 266 (1998)

    Article  ADS  Google Scholar 

  45. Puglisi, A., Loreto, V., Marconi, U.M.B., Vulpiani, A.: Clustering and non-gaussian behavior in granular matter. Phys. Rev. Lett. 81, 3848 (1998)

    Article  ADS  Google Scholar 

  46. Puglisi, A., Loreto, V., Marconi, U.M.B., Vulpiani, A.: Kinetic approach to granular gases. Phys. Rev. E 59, 5582 (1999)

    Article  ADS  Google Scholar 

  47. Puglisi, A., Gnoli, A., Gradenigo, G., Sarracino, A., Villamaina, D.: Structure factors in granular experiments with homogeneous fluidization. J. Chem. Phys. 136, 014704 (2012)

    Article  ADS  Google Scholar 

  48. Schorghofer, N., Zhou, T.: Inelastic collapse of rotating spheres. Phys. Rev. E 54, 5511 (1996)

    Article  ADS  Google Scholar 

  49. Spohn, H.: Boltzmann hierarchy and Boltzmann Equation, vol. 1048, p. 207. Springer, Berlin (1984).

    Google Scholar 

  50. Visco, P., van Wijland, F., Trizac, E.: Collisional statistics of the hard-sphere gas. Phys. Rev. E 77, 041117 (2008)

    Article  ADS  Google Scholar 

  51. Walton, O.R., Braun, R.L.: Stress calculations for assemblies of inelastic spheres in uniform shear. Acta. Mech. 63, 73 (1986)

    Article  Google Scholar 

  52. Walton, O.R., Braun, R.L.: Viscosity, granular-temperature, and stress calculations for shearing assemblies of inelastic, frictional disks. J. Rheol. 30, 949 (1986)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Puglisi .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 The Author(s)

About this chapter

Cite this chapter

Puglisi, A. (2015). Boltzmann Equation: A Gas of Grains. In: Transport and Fluctuations in Granular Fluids. SpringerBriefs in Physics. Springer, Cham. https://doi.org/10.1007/978-3-319-10286-3_2

Download citation

Publish with us

Policies and ethics