Skip to main content

Dynamics and Control Under State Constraints

  • Chapter
  • First Online:
Dynamics and Control of Trajectory Tubes

Part of the book series: Systems & Control: Foundations & Applications ((SCFA,volume 85))

  • 1093 Accesses

Abstract

The topics of this chapter are problems of reachability and system dynamics under state constraints in the form of reach tubes. Indicated are general approaches based on the Hamiltonian formalism and a related Comparison Principle. Further emphasis is on the dynamics of linear systems under hard bounds on the controls and system trajectories. A detailed solution is presented based on ellipsoidal approximations of bounded trajectory tubes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 19.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 29.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 29.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The boundary \(\partial \mathcal{X}[\uptau ]\) of \(\mathcal{X}[\uptau ]\) may be defined as the set \(\partial \mathcal{X}[\uptau ] = \mathcal{X}[\uptau ]\setminus \mathrm{int}\mathcal{X}[\uptau ]\). Under the controllability assumption, \(\mathcal{X}[\uptau ]\) has a nonempty interior, \(\mathrm{int}\mathcal{X}[\uptau ]\not =\varnothing,\;\uptau> t_{0}\).

  2. 2.

    In the general case, under Assumption 7.2.1, the optimal trajectory may visit the smooth boundary of the state constraint for a countable set of closed intervals, and function L 0(⋅ ) allows not more than a countable set of discontinuities of the first order.

  3. 3.

    The same minimum value is also attained here in classes of functions broader than \(\mathcal{C}_{00}\).

  4. 4.

    The computer illustrations for this subsection were made by M.N. Kirilin.

References

  1. Aubin, J.-P.: Viability Theory. SCFA. Birkhäuser, Boston (1991)

    MATH  Google Scholar 

  2. Aubin, J.-P., Bayen, A.M., St.Pierre, P.: Viability Theory: New Directions. Springer, Heidelberg (2011)

    Google Scholar 

  3. Bardi, M., Capuzzo Dolcetta, I.: Optimal Control and Viscosity Solutions of Hamilton–Jacobi–Bellman Equations. SCFA. Birkhäuser, Boston (1997)

    Book  MATH  Google Scholar 

  4. Bohner, M., Peterson, A.: Dynamic Equations on Time Scales: An Introduction with Applications. Birkhauser, Boston (2001)

    Book  Google Scholar 

  5. Clarke, F.H., Ledyaev Yu, S., Stern, R.J., Wolenski, P.R.: Nonsmooth Analysis and Control Theory. Graduate Texts in Mathematics, vol. 178. Springer, New York (1998)

    Google Scholar 

  6. Crandall, M.G., Lions, P.-L.: Viscosity solutions of Hamilton–Jacobi equations. Trans. Am. Math. Soc. 277(1), 1–41 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  7. Courant, R., Hilbert, D.: Methods of Mathematical Physics, vol. 1 & 2. Wiley, New York (1989) (Wiley GmbH & Co., KGaA, 2008)

    Google Scholar 

  8. Fleming, W.H., Soner, H.M.: Controlled Markov Processes and Viscosity Solutions. Springer, New York (1993)

    MATH  Google Scholar 

  9. Gusev, M.I., Kurzhanski, A.B.: Optimization of controlled systems with bounds on the controls and state coordinates, I. Differ. Equ. 7(9), 1591–1602 (1971) [translated from Russian]

    MATH  Google Scholar 

  10. Gusev, M.I., Kurzhanski, A.B.: Optimization of controlled systems with bounds on the controls and state coordinates, II. Differ. Equ. 7(10), 1789–1800 (1971) [translated from Russian]

    MATH  Google Scholar 

  11. Helton, J.W., James, M.R.: Extending H Control to Nonlinear Systems. SIAM, Philadelphia (1999)

    MATH  Google Scholar 

  12. Kalman, R.E., Ho, Y.-C., Narendra, K.S.: Controllability of linear dynamical systems. Contrib. Theory Differ. Equ. 1(2), 189–213 (1963)

    MathSciNet  Google Scholar 

  13. Krasovskii, N.N., Subbotin, A.I.: Game-Theoretical Control Problems. Springer Series in Soviet Mathematics. Springer, New York (1988)

    Book  MATH  Google Scholar 

  14. Kurzhanski, A.B.: Control and Observation Under Uncertainty Conditions, 392 pp. Nauka, Moscow (1977)

    Google Scholar 

  15. Kurzhanski, A.B., Filippova, T.F.: On the theory of trajectory tubes: a mathematical formalism for uncertain dynamics, viability and control. In: Advances in Nonlinear Dynamics and Control. Progress in Systems and Control Theory, vol. 17, pp. 122–188. Birkhäuser, Boston (1993)

    Google Scholar 

  16. Kurzhanski, A.B., Kirilin, M.N.: Ellipsoidal techniques for reachability problems under nonellipsoidal constraints. In: Proceedings of the NOLCOS-01, St. Petersburg, pp. 768–768 (2001)

    Google Scholar 

  17. Kurzhanski, A.B., Nikonov, O.I.: Evolution equations for trajectory bundles of synthesized control systems. Russ. Acad. Sci. Dokl. Math. 333(5), 578–581 (1993)

    Google Scholar 

  18. Kurzhanski, A.B., Osipov, Y.S.: On optimal control under state constraints. Appl. Math. Mech. (PMM) 33(4), 705–719 (1969)

    Google Scholar 

  19. Kurzhanski, A.B., Vályi, I.: Ellipsoidal Calculus for Estimation and Control. SCFA. Birkhäuser, Boston (1997)

    Book  MATH  Google Scholar 

  20. Kurzhanski, A.B., Varaiya, P.: Dynamic optimization for reachability problems. J. Optim. Theory Appl. 108(2), 227–251 (2001)

    Article  MathSciNet  Google Scholar 

  21. Kurzhanski, A.B., Varaiya, P.: Ellipsoidal techniques for reachability analysis. Part I: external approximations. Optim. Methods Softw. 17(2), 177–206 (2002)

    MathSciNet  MATH  Google Scholar 

  22. Kurzhanski, A.B., Varaiya, P.: Ellipsoidal techniques for reachability analysis. Part II: internal approximations. Box-valued constraints. Optim. Methods Softw. 17(2), 207–237 (2002)

    MathSciNet  MATH  Google Scholar 

  23. Kurzhanski, A.B., Varaiya, P.: Ellipsoidal techniques for reachability under state constraints. SIAM J. Control Optim. 45(4), 1369–1394 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  24. Leitmann, G.: Optimality and reachability with feedback controls. In: Blaquière, A., Leitmann, G. (eds.) Dynamical Systems and Microphysics: Control Theory and Mechanics. Academic, Orlando (1982)

    Google Scholar 

  25. Osher, S., Fedkiw, R.: Level Set Methods and Dynamic Implicit Surfaces. Applied Mathematical Sciences, vol. 153. Springer, New York (2003)

    Google Scholar 

  26. Riesz, F., Sz-.Nagy, B.: Leçons d’analyse fonctionnelle. Akadémiai Kiadó, Budapest (1972)

    Google Scholar 

  27. Rockafellar, R.T.: Convex Analysis, 2nd edn. Princeton University Press, Princeton (1999)

    Google Scholar 

  28. Sethian, J.A.: Level Set Methods and Fast Marching Methods. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  29. Subbotin, A.I.: Generalized Solutions of First-Order PDE’s. The Dynamic Optimization Perspective. SCFA. Birkhäuser, Boston (1995)

    Book  Google Scholar 

  30. Subbotina, N.N., Kolpakova, E.A., Tokmantsev, T.B., Shagalova, L.G.: Method of Characteristics for the Hamilton-Jacobi-Bellman Equation. Ural Scientific Center/Russian Academy of Sciences, Yekaterinburg (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kurzhanski, A.B., Varaiya, P. (2014). Dynamics and Control Under State Constraints. In: Dynamics and Control of Trajectory Tubes. Systems & Control: Foundations & Applications, vol 85. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-10277-1_7

Download citation

Publish with us

Policies and ethics