Advertisement

Dynamics and Control Under State Constraints

Chapter
  • 925 Downloads
Part of the Systems & Control: Foundations & Applications book series (SCFA, volume 85)

Abstract

The topics of this chapter are problems of reachability and system dynamics under state constraints in the form of reach tubes. Indicated are general approaches based on the Hamiltonian formalism and a related Comparison Principle. Further emphasis is on the dynamics of linear systems under hard bounds on the controls and system trajectories. A detailed solution is presented based on ellipsoidal approximations of bounded trajectory tubes.

Keywords

State constraints Reach tubes Comparison Principle Hamiltonian approach Linear-convex systems Ellipsoidal techniques 

References

  1. 5.
    Aubin, J.-P.: Viability Theory. SCFA. Birkhäuser, Boston (1991)zbMATHGoogle Scholar
  2. 6.
    Aubin, J.-P., Bayen, A.M., St.Pierre, P.: Viability Theory: New Directions. Springer, Heidelberg (2011)Google Scholar
  3. 16.
    Bardi, M., Capuzzo Dolcetta, I.: Optimal Control and Viscosity Solutions of Hamilton–Jacobi–Bellman Equations. SCFA. Birkhäuser, Boston (1997)CrossRefzbMATHGoogle Scholar
  4. 32.
    Bohner, M., Peterson, A.: Dynamic Equations on Time Scales: An Introduction with Applications. Birkhauser, Boston (2001)CrossRefGoogle Scholar
  5. 48.
    Clarke, F.H., Ledyaev Yu, S., Stern, R.J., Wolenski, P.R.: Nonsmooth Analysis and Control Theory. Graduate Texts in Mathematics, vol. 178. Springer, New York (1998)Google Scholar
  6. 50.
    Crandall, M.G., Lions, P.-L.: Viscosity solutions of Hamilton–Jacobi equations. Trans. Am. Math. Soc. 277(1), 1–41 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 51.
    Courant, R., Hilbert, D.: Methods of Mathematical Physics, vol. 1 & 2. Wiley, New York (1989) (Wiley GmbH & Co., KGaA, 2008)Google Scholar
  8. 80.
    Fleming, W.H., Soner, H.M.: Controlled Markov Processes and Viscosity Solutions. Springer, New York (1993)zbMATHGoogle Scholar
  9. 96.
    Gusev, M.I., Kurzhanski, A.B.: Optimization of controlled systems with bounds on the controls and state coordinates, I. Differ. Equ. 7(9), 1591–1602 (1971) [translated from Russian]zbMATHGoogle Scholar
  10. 97.
    Gusev, M.I., Kurzhanski, A.B.: Optimization of controlled systems with bounds on the controls and state coordinates, II. Differ. Equ. 7(10), 1789–1800 (1971) [translated from Russian]zbMATHGoogle Scholar
  11. 98.
    Helton, J.W., James, M.R.: Extending H Control to Nonlinear Systems. SIAM, Philadelphia (1999)zbMATHGoogle Scholar
  12. 109.
    Kalman, R.E., Ho, Y.-C., Narendra, K.S.: Controllability of linear dynamical systems. Contrib. Theory Differ. Equ. 1(2), 189–213 (1963)MathSciNetGoogle Scholar
  13. 123.
    Krasovskii, N.N., Subbotin, A.I.: Game-Theoretical Control Problems. Springer Series in Soviet Mathematics. Springer, New York (1988)CrossRefzbMATHGoogle Scholar
  14. 137.
    Kurzhanski, A.B.: Control and Observation Under Uncertainty Conditions, 392 pp. Nauka, Moscow (1977)Google Scholar
  15. 158.
    Kurzhanski, A.B., Filippova, T.F.: On the theory of trajectory tubes: a mathematical formalism for uncertain dynamics, viability and control. In: Advances in Nonlinear Dynamics and Control. Progress in Systems and Control Theory, vol. 17, pp. 122–188. Birkhäuser, Boston (1993)Google Scholar
  16. 160.
    Kurzhanski, A.B., Kirilin, M.N.: Ellipsoidal techniques for reachability problems under nonellipsoidal constraints. In: Proceedings of the NOLCOS-01, St. Petersburg, pp. 768–768 (2001)Google Scholar
  17. 164.
    Kurzhanski, A.B., Nikonov, O.I.: Evolution equations for trajectory bundles of synthesized control systems. Russ. Acad. Sci. Dokl. Math. 333(5), 578–581 (1993)Google Scholar
  18. 166.
    Kurzhanski, A.B., Osipov, Y.S.: On optimal control under state constraints. Appl. Math. Mech. (PMM) 33(4), 705–719 (1969)Google Scholar
  19. 174.
    Kurzhanski, A.B., Vályi, I.: Ellipsoidal Calculus for Estimation and Control. SCFA. Birkhäuser, Boston (1997)CrossRefzbMATHGoogle Scholar
  20. 178.
    Kurzhanski, A.B., Varaiya, P.: Dynamic optimization for reachability problems. J. Optim. Theory Appl. 108(2), 227–251 (2001)MathSciNetCrossRefGoogle Scholar
  21. 181.
    Kurzhanski, A.B., Varaiya, P.: Ellipsoidal techniques for reachability analysis. Part I: external approximations. Optim. Methods Softw. 17(2), 177–206 (2002)MathSciNetzbMATHGoogle Scholar
  22. 182.
    Kurzhanski, A.B., Varaiya, P.: Ellipsoidal techniques for reachability analysis. Part II: internal approximations. Box-valued constraints. Optim. Methods Softw. 17(2), 207–237 (2002)MathSciNetzbMATHGoogle Scholar
  23. 185.
    Kurzhanski, A.B., Varaiya, P.: Ellipsoidal techniques for reachability under state constraints. SIAM J. Control Optim. 45(4), 1369–1394 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 198.
    Leitmann, G.: Optimality and reachability with feedback controls. In: Blaquière, A., Leitmann, G. (eds.) Dynamical Systems and Microphysics: Control Theory and Mechanics. Academic, Orlando (1982)Google Scholar
  25. 221.
    Osher, S., Fedkiw, R.: Level Set Methods and Dynamic Implicit Surfaces. Applied Mathematical Sciences, vol. 153. Springer, New York (2003)Google Scholar
  26. 234.
    Riesz, F., Sz-.Nagy, B.: Leçons d’analyse fonctionnelle. Akadémiai Kiadó, Budapest (1972)Google Scholar
  27. 237.
    Rockafellar, R.T.: Convex Analysis, 2nd edn. Princeton University Press, Princeton (1999)Google Scholar
  28. 244.
    Sethian, J.A.: Level Set Methods and Fast Marching Methods. Cambridge University Press, Cambridge (1999)zbMATHGoogle Scholar
  29. 247.
    Subbotin, A.I.: Generalized Solutions of First-Order PDE’s. The Dynamic Optimization Perspective. SCFA. Birkhäuser, Boston (1995)CrossRefGoogle Scholar
  30. 248.
    Subbotina, N.N., Kolpakova, E.A., Tokmantsev, T.B., Shagalova, L.G.: Method of Characteristics for the Hamilton-Jacobi-Bellman Equation. Ural Scientific Center/Russian Academy of Sciences, Yekaterinburg (2013)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Faculty of Computational Mathematics and CyberneticsMoscow State (Lomonosov) UniversityMoscowRussia
  2. 2.Electrical Engineering and Computer SciencesUniversity of California, BerkeleyBerkeleyUSA

Personalised recommendations