Verification: Hybrid Systems

Part of the Systems & Control: Foundations & Applications book series (SCFA, volume 85)


This chapter deals with a specific class of hybrid systems which combine controlled continuous dynamics through switching from one available motion to another due to discrete-time logical commands. Solutions to the reachability problem and their verification are indicated, followed by computational schemes, The application of impulse controls to the switching process is described. Examples of various difficulty are worked out. The chapter is to demonstrate applicability of methods of this book to hybrid systems.


Hybrid system Switching Reachability Verification Branching trajectory tubes Ellipsoidal methods Impulse feedback control 


  1. 23.
    Bensoussan, A., Lions, J.-L.: Contrôle impulsionnel et inéquations quasi-variationnelles. Dunod, Paris (1982)zbMATHGoogle Scholar
  2. 36.
    Branicky, M.S., Borkar, V.S., Mitter, S.K.: A unified framework for hybrid control: model and optimal control theory. IEEE Trans. Automat. Control 43(1), 31–45 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 39.
    Brockett, R.W.: Hybrid models for motion control systems. In: Trentelman, H., Willems, J. (eds.) Essays in Control: Perspectives in the Theory and Its Applications, pp. 29–53. Birkhäuser, Boston (1993)CrossRefGoogle Scholar
  4. 91.
    Goebel, R., Sanfelice, R.G., Teel, A.R.: Hybrid Dynamical Systems. Princeton University Press, Princeton (2012)zbMATHGoogle Scholar
  5. 104.
    Johansson, M.: Piecewise Linear Control Systems. Lecture Notes in Control and Information Sciences, vol. 284. Springer, Berlin (2003)Google Scholar
  6. 170.
    Kurzhanski, A.B., Tochilin, P.A.: Weakly invariant sets of hybrid systems. Differ. Equ. 44(11), 1585–1594 (2008)MathSciNetCrossRefGoogle Scholar
  7. 171.
    Kurzhanski, A.B., Tochilin, P.A.: Impulse controls in models of hybrid systems. Differ. Equ. 45(5), 731–742 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 175.
    Kurzhanski, A.B., Varaiya, P.: Ellipsoidal techniques for reachability analysis. In: Proceedings of the Pittsburg Conference “Hybrid Systems-2000”. Lecture Notes in Control Science, vol. 1790, pp. 202–214. Springer, Berlin (2000)Google Scholar
  9. 204.
    Lygeros, J., Tomlin, C., Sastry, S.: Controllers for reachability specifications for hybrid systems. Automatica 35(3), 349–370 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 228.
    Puri, A., Varaiya, P.: Decidability of hybrid systems with rectangular differential inclusions. In: Proceedings of the 6th Workshop on Computer-Aided Verification. Lecture Notes in Control Science, vol. 818, pp. 95–104. Springer, New York (1994)Google Scholar
  11. 229.
    Puri, A., Borkar, V.S., Varaiya, P.: \(\upvarepsilon\)-Approximation of differential inclusions. In: Hybrid Systems. Lecture Notes in Control Science, vol. 1066, pp. 362–376. Springer, New York (1996)Google Scholar
  12. 234.
    Riesz, F., Sz-.Nagy, B.: Leçons d’analyse fonctionnelle. Akadémiai Kiadó, Budapest (1972)Google Scholar
  13. 258.
    Van der Schaft, A., Schumacher, H.: An Introduction to Hybrid Dynamical Systems. Lecture Notes in Control and Information Sciences, vol. 25. Springer, Berlin (2000)Google Scholar
  14. 259.
    Varaiya, P.: Reach set computation using optimal control. In: Proceedings of the KIT Workshop on Verification of Hybrid Systems, Grenoble, October 1998Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Faculty of Computational Mathematics and CyberneticsMoscow State (Lomonosov) UniversityMoscowRussia
  2. 2.Electrical Engineering and Computer SciencesUniversity of California, BerkeleyBerkeleyUSA

Personalised recommendations