Decentralized Movement Analysis

  • Patrick LaubeEmail author
Part of the SpringerBriefs in Computer Science book series (BRIEFSCOMPUTER)


This chapter investigates the implications of decentralized spatial computing for Computational Movement Analysis (CMA). As more and more moving objects are permanently connected to some communication network and to each other, movement analysis is no longer limited to desktop computers collecting movement data first and then analyzing it. By contrast, networked and communicating agents start analyzing information about their movement in a decentralized but collaborative way. This chapter illustrates decentralized spatial analysis concepts for the CMA tasks of monitoring network flow in transportation systems, movement pattern mining, point clustering, and privacy-aware location-based services.


Sensor Node Wireless Sensor Network Mobile Node Mobile Agent Information Token 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Ahas, R., Silm, S., Järv, O., Saluveer, E., & Tiru, M. (2010). Using mobile positioning data to model locations meaningful to users of mobile phones. Journal of Urban Technology, 17(1), 3–27.CrossRefGoogle Scholar
  2. Arampatzis, T., Lygeros, J., & Manesis, S. (2005). A survey of applications of wireless sensors and wireless sensor networks. In Proceedings of the 2005 IEEE International Symposium on Intelligent Control and Mediterrean Conference on Control and Automation, pp. 719–724.Google Scholar
  3. Augusto, J. C., & Shapiro, D. (Eds.). (2007). Advances in Ambient Intelligence, Volume 164 of Frontiers in Artificial Intelligence and Applications. Amsterdam, NL: IOS Press.Google Scholar
  4. Both, A., Duckham, M., Laube, P., Wark, T., & Yeoman, J. (2013). Decentralized monitoring of moving objects in a transportation network augmented with checkpoints. The Computer Journal, 56(12), 1432–1449. doi: 10.1093/comjnl/bxs117.CrossRefGoogle Scholar
  5. Correll, N., & Martinoli, A. (2006). Collective inspection of regular structures using a swarm of miniature robots. In J. Ang, J. Khatib, & O. Khatib (Eds.), Experimental Robotics IX, The 9th International Symposium on Experimental Robotics (ISER), Singapore, June 18–21 (Vol. 21, pp. 375–385). Springer Tracts in Advanced Robotics. Berlin: Springer.Google Scholar
  6. Datta, S., Bhaduri, K., Giannella, C., Kargupta, H., & Wolff, R. (2006). Distributed data mining in peer-to-peer networks. IEEE Internet Computing, 10(4), 18–26.CrossRefGoogle Scholar
  7. Dillenburg, J. F., Wolfson, O., & Nelson, P. C. (2002). The intelligent travel assistant. In The IEEE 5th International Conference on Intelligent Transportation Systems, pp. 691–696.Google Scholar
  8. Dobson, J. E., & Fisher, P. F. (2003). Geoslavery. IEEE Technology and Society Magazine, 22(1), 47–52.CrossRefGoogle Scholar
  9. Dredge, S. (2013). Waze and means: Google tipped to beat apple and facebook to \({\$}\)1.3bn acquisition. The Guardian.Google Scholar
  10. Duckham, M. (2012). Decentralized Spatial Computing, Foundations of Geosensor Networks. Berlin: Springer.Google Scholar
  11. Duckham, M., & Bennett, R. (2009). Ambient spatial intelligence. In B. Gottfried & H. Aghajan (Eds.), Behaviour Monitoring and Interpretation—BMI—Smart Environments. Ambient Intelligence and Smart Environments (Vol. 3, pp. 319–335). Amsterdam, NL: IOS Press.Google Scholar
  12. Duckham, M., Nittel, S., & Worboys, M. (2005). Monitoring dynamic spatial fields using responsive geosensor networks. In C. Shahabi & O. Boucelma (Eds.), ACM GIS (pp. 51–60). New York: ACM Press.Google Scholar
  13. Galton, A. (2004). Fields and objects in space, time, and space-time. Spatial Cognition and Computation, 4(1), 39–68.CrossRefMathSciNetGoogle Scholar
  14. Giannotti, F., & Pedreschi, D. (2008). Mobility, data mining and privacy: A vision of convergence. In F. Giannotti & D. Pedreschi (Eds.), Mobility, Data Mining and Privacy (pp. 1–11). Berlin: Springer.CrossRefGoogle Scholar
  15. Greenfield, A. (2006). Everyware: The dawning age of ubiquitous computing. Berkeley: New Riders Press.Google Scholar
  16. Grenon, P., & Smith, B. (2004). SNAP and SPAN: Towards dynamic spatial ontology. Spatial Cognition and Computation, 4(1), 69–103.CrossRefGoogle Scholar
  17. Grossglauser, M., & Tse, D. N. C. (2002). Mobility increases the capacity of ad hoc wireless networks. IEEE/ACM Transactions on Networking, 10(4), 477–486.CrossRefGoogle Scholar
  18. Grossglauser, M., & Vetterli, M. (2006). Locating mobile nodes with ease: Learning efficient routes from encounter histories alone. IEEE/ACM Transactions on Networking, 14(3), 457–469.CrossRefGoogle Scholar
  19. Kargupta, H., & Chan, P. (2000). Advances in distributed and parallel knowledge discovery. Menlo Park, CA: AAAI Press, the MIT Press.Google Scholar
  20. Kellerer, W., Bettstetter, C., Schwingenschlogl, C., Sties, P., & Steinberg, K. E. (2001). (Auto) mobile communication in a heterogeneous and converged world. IEEE Personal Communications, 8(6), 41–47.CrossRefGoogle Scholar
  21. Kim, S., Maciejewski, R., Ostmo, K., Delp, E. J., Collins, T. F., & Ebert, D. S. (2008). Mobile analytics for emergency response and training. Information Visualization, 7(1), 77–88.CrossRefGoogle Scholar
  22. Koehn, J., Nicol, S., McKenzie, J., Lieschke, J., Lyon, J., & Pomorin, K. (2008). Spatial ecology of an endangered native australian percichthyid fish, the trout cod maccullochella macquariensis. Endangered Species Research, 4(1–2), 219–225.CrossRefGoogle Scholar
  23. Kosch, T. Adler, C. J., Eichler, S. Schroth, C. & Strassberger, M. (2006). The scalability problem of vehicular ad hoc networks and how to solve it. Wireless Communications, IEEE, 13(5), 22–28.Google Scholar
  24. Laube, P., & Duckham, M. (2009). Decentralized spatial data mining for geosensor networks. In H. Miller & J. Han (Eds.), Geographic data mining and knowledge discovery (2nd ed., pp. 409–430). London: CRC Press.Google Scholar
  25. Laube, P., Duckham, M., & Croitoru, A. (2009). Distributed and mobile spatial computing. Computers, Environment and Urban Systems, 33(2), 77–78.CrossRefGoogle Scholar
  26. Laube, P., Duckham, M., & Palaniswami, M. (2011). Deferred decentralized movement pattern mining for geosensor networks. International Journal of Geographical Information Science, 25(2), 273–292. doi: 10.1080/13658810903296630.CrossRefGoogle Scholar
  27. Laube, P., Duckham, M., & Wolle, T. (2008). Decentralized movement pattern detection amongst mobile geosensor nodes. In T. J. Cova, K. Beard, M. F. Goodchild, & A. U. Frank (Eds.), Geographic Information Science (pp. 199–216). Volume 5266 of Lecture Notes in Computer Science. Berlin: Springer. ISBN 978-3-540-87472-0.Google Scholar
  28. Laube, P., Duckham, M., Worboys, M., & Joyce, T. (2010). Decentralized spatial computing in urban environments. In B. Jiang & X. Yao (Eds.), Geospatial analysis and modelling of urban structure and dynamics (pp. 53–74). Berlin Heidelberg: GeoJournal Library, Springer.CrossRefGoogle Scholar
  29. Lynch, N. (1996). Distributed algorithms. San Mateo, CA: Morgan Kaufmann.zbMATHGoogle Scholar
  30. McLurkin, J. (2008). Analysis and implementation of distributed algorithms for multi-robot systems (PhD thesis, Massachusetts Institute of Technology).Google Scholar
  31. Nittel, S. (2009). A survey of geosensor networks: Advances in dynamic environmental monitoring. Sensors, 9(7), 5664–5678.CrossRefGoogle Scholar
  32. Nittel, S., Stefanidis, A., Cruz, I., Egenhofer, M. J., Goldin, D., Howard, A., et al. (2004). Report from the first workshop on geo sensor networks. ACM SIGMOD Record, 33(1), 141–144.Google Scholar
  33. Nouwt, S. (2008). Reasonable expectations of geo-privacy? SCRIPTed, 5(2), 375–403.CrossRefGoogle Scholar
  34. Rule, J., McAdam, D., Stearn, L., & Uglow, D. (1980). Politics of privacy. New York: New American Library.Google Scholar
  35. Smith, P., Hutchison, D., Sterbenz, J. P. G., Schöller, M., Fessi, A., Karaliopoulos, M., et al. (2011). Network resilience: A systematic approach. IEEE Communications Magazine, 49(7), 88–97.CrossRefGoogle Scholar
  36. Uteck, A. (2009). Ubiquitous computing and spatial privacy, anonymity, privacy and identity in a networked society. In I. Kerr, V. Steeves & C. Lucock, (Eds.), Lessons from the identity trail (pp. 83–102). Oxford: Oxford University Press.Google Scholar
  37. Werner-Allen, G., Lorinez, K., Ruiz, M., Marcillo, O., Johnson, J., Lees, J., et al. (2006). Deploying a wireless sensor network on an active volcano. IEEE Internet Computing, 10(2), 18–25.CrossRefGoogle Scholar
  38. Wilensky, U. (1999). Netlogo (and netlogo user manual).Google Scholar
  39. Winter, S., & Nittel, S. (2006). Ad hoc shared-ride trip planning by mobile geosensor networks. International Journal of Geographical Information Science, 20(8), 899–916.CrossRefGoogle Scholar
  40. Worboys, M., & Duckham, M. (2004). GIS: A computing perspective (2nd ed.). New York: CRC Press.Google Scholar
  41. Wu, Y. H., Guan, L. J., & Winter, S. (2007). Peer-to-peer shared ride systems. In S. Nittel, A. Labrinidis, & A. Stefanidis (Eds.), Advances in geosensor networks (Vol. 4540). Lecture Notes in Computer Science. Berlin: Springer.Google Scholar
  42. Zhao, F., & Guibas, L. J. (2004). Wireless sensor networks: An information processing approach. San Francisco, CA: Morgan Kaufmann Publishers.Google Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  1. 1.Institute of Natural Resource SciencesZurich University of Applied SciencesWädenswilSwitzerland

Personalised recommendations