Skip to main content

Movement Mining

  • Chapter
  • First Online:
Computational Movement Analysis

Part of the book series: SpringerBriefs in Computer Science ((BRIEFSCOMPUTER))

  • 1204 Accesses

Abstract

With ever increasing volumes and complexity of spatio-temporal information, knowledge discovery in databases and its best known step data mining, have rapidly gained importance within Geography and GIScience. Analyzing spatio-temporal data first of all means structuring data, then extracting relevant spatial patterns and rules and providing decision makers with enriched information and condensed knowledge rather than flooding them with raw data. Movement patterns, for example, represent such sought-for high-level process knowledge derived from low-level trajectory data. This second chapter introducing the research field of Computational Movement Analysis (CMA) reviews research on several aspects of mining movement data, including the conceptualization and formalization of movement patterns and the development of algorithms for their detection, the computing of trajectory similarity, and methods for visualization-based exploratory analysis of movement data

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Whereas this chapter discusses movement mining in conventional omniscient and centralized information systems or databases, the following Chap. 4 discusses the rather peculiar case where data mining is performed in decentralized systems such as geosensor networks. Even though most of the work summarized in Chap. 4 nominally also proposes data mining techniques, its theoretical underpinning in decentralized spatial computing justifies a separate chapter focusing on decentralized movement analysis alone.

  2. 2.

    Note, the research on flocking featured in this book combines data mining concepts with decentralized spatial computing principles. This chapter focuses on the data general data mining aspects, Chap. 4 on the specifics of mining movement patterns in a decentralized setting.

References

  • Andersson, M., Gudmundsson, J., Laube, P., & Wolle, T. (2008). Reporting leaders and followers among trajectories of moving point objects. GeoInformatica, 12(4), 497–528.

    Article  Google Scholar 

  • Andrienko, G., Andrienko, N., Demsar, U., Dransch, D., Dykes, J., Fabrikant, S. I., et al. (2010). Space, time and visual analytics. International Journal of Geographical Information Science, 24(10), 1577–1600.

    Article  Google Scholar 

  • Andrienko, N., & Andrienko, G. (2007). Designing visual analytics methods for massive collections of movement data. Cartographica, 42(2), 117–138.

    Article  Google Scholar 

  • Andrienko, N., & Andrienko, G. (2011). Spatial generalization and aggregation of massive movement data. IEEE Transactions on Visualization and Computer Graphics, 17(2), 205–219.

    Article  Google Scholar 

  • Anselin, L. (1995). Local indicators of spatial association—LISA. Geographical Analysis, 27(2), 93–115.

    Article  Google Scholar 

  • Baglioni, M., & Fernandes de Macedo, J. A. (2009). Towards semantic interpretation of movement behavior advances in giscience. In M. Sester (Ed.), Advances in GIScience (pp. 271–288)., Lecture Notes in Geoinformation and Cartography Berlin: Springer.

    Chapter  Google Scholar 

  • Benkert, M., Gudmundsson, J., Hübner, F., & Wolle, T. (2008). Reporting flock patterns. Computational Geometry, 41(3), 111–125.

    Article  MATH  MathSciNet  Google Scholar 

  • Bertin, J., Berg, W., and Scott, P. (1981). Graphics and graphic information processing. De Gruyter.

    Google Scholar 

  • Bleisch, S., Duckham, M., Galton, A., Laube, P., & Lyon, J. (2014). Mining candidate causal relationships in movement patterns. International Journal of Geographical Information Science, 28(2), 363–382.

    Article  Google Scholar 

  • Bogaert, P., Van De Weghe, N., Cohn, A. G., Witlox, F., & De Maeyer, P. (2007). The qualitative trajectory calculus on networks. Spatial cognition V reasoning, action, interaction (Vol. 4387, pp. 20–38)., Lecture Notes in Computer Science, LNAI Berlin: Springer.

    Chapter  Google Scholar 

  • Both, A., Duckham, M., Laube, P., Wark, T., & Yeoman, J. (2013). Decentralized monitoring of moving objects in a transportation network augmented with checkpoints. The Computer Journal, 56(12), 1432–1449.

    Article  Google Scholar 

  • Buchin, K., Buchin, M., & Gudmundsson, J. (2010a). Constrained free space diagrams: A tool for trajectory analysis. International Journal of Geographical Information Science, 24(7), 1101–1125.

    Google Scholar 

  • Buchin, K., Buchin, M., van Kreveld, M., & Luo, J. (2011a). Finding long and similar parts of trajectories. Computational Geometry, 44(9), 465–476.

    Article  MATH  MathSciNet  Google Scholar 

  • Buchin, M., Dodge, S., Speckmann, B., et al. (2012). Context-aware similarity of trajectories. In N. Xiao, M. -P. Kwan, M. Goodchild, & S. Shekhar (Eds.), Geographic information science. Lecture Notes in Computer Science (Vol. 7478, pp. 43–56). Berlin: Springer.

    Google Scholar 

  • Buchin, M., Driemel, A., van Kreveld, M., & Sacristan, V. (2010b). An algorithmic framework for segmenting trajectories based on spatio-temporal criteria. In 18th International Conference on Advances in Geographic Information Systems (ACM SIGSPATIAL GIS. (2010). San Jose. California: ACM.

    Google Scholar 

  • Buchin, M., Driemel, A., van Kreveld, M., & Sacristan, V. (2011b). Segmenting trajectories: A framework and algorithms using spatiotemporal criteria. JOSIS, 3, 33–63.

    Google Scholar 

  • Chakrabarti, S., Ester, M., Fayyad, U., Gehrke, J., Han, J., Morishita, S., & et al. (2006). Data mining curriculum: A proposal. Intensive Working Group of ACM SIGKDD Curriculum Committee: Technical report.

    Google Scholar 

  • Demsar, U., & Virrantaus, K. (2010). Space-time density of trajectories: Exploring spatio-temporal patterns in movement data. International Journal of Geographical Information Science, 24(10), 1527–1542.

    Article  Google Scholar 

  • Dennis, T. E., Chen, W. C., Koefoed, I. M., Lacoursiere, C. J., Walker, M. M., Laube, P., et al. (2010). Performance characteristics of small global-positioning-system tracking collars for terrestrial animals. Wildlife Biology in Practice, 6(1), 14–31.

    Article  Google Scholar 

  • Dodge, S., Weibel, R., & Lautenschütz, A.-K. (2008). Towards a taxonomy of movement patterns. Information Visualization, 7(3–4), 240–252.

    Article  Google Scholar 

  • Dodge, S., Laube, P., & Weibel, R. (2012). Movement similarity assessment using symbolic representation of trajectories. International Journal of Geographical Information Science, 26(9), 1563–1588.

    Article  Google Scholar 

  • Downs, J. A., & Horner, M. W. (2010). In S. Fabrikant, T. Reichenbacher, M. Kreveld, & C. Schlieder (Eds.), Geographic information science. Lecture Notes in Computer Science (Vol. 6292, pp. 16–26). Berlin: Springer.

    Google Scholar 

  • Downs, J. A., & Horner, M. W. (2012). Analysing infrequently sampled animal tracking data by incorporating generalized movement trajectories with kernel density estimation. Computers, Environment and Urban Systems, 36(4), 302–310.

    Article  Google Scholar 

  • Dumont, B., Boissy, A., Achard, C., Sibbald, A. M., & Erhard, H. W. (2005). Consistency of animal order in spontaneous group movements allows the measurement of leadership in a group of grazing heifers. Applied Animal Behaviour Science, 95(1–2), 55–66.

    Article  Google Scholar 

  • Fayyad, U., Piatetsky-Shapiro, G., & Smyth, P. (1996). From data mining to knowledge discovery in databases. AI Magazine, 17(3), 37–54.

    Google Scholar 

  • Galton, A. (2005). Dynamic collectives and their collective dynamics. In A. Cohn & D. M. Mark (Eds.), Spatial Information Theory, Proceedings. Lecture Notes in Computer Science (Vol. 3693, pp. 300–315). Heidelberg: Springer.

    Google Scholar 

  • Geng, L., & Hamilton, H. J. (2006). Interestingness measures for data mining: A survey. ACM Computing Surveys, 38(3), 9.

    Article  Google Scholar 

  • Gonzalez, M. C., Hidalgo, C. A., & Barabasi, A. L. (2008). Understanding individual human mobility patterns. Nature, 453(7196), 779–782.

    Article  Google Scholar 

  • Gottfried, B. (2011). Interpreting motion events of pairs of moving objects. GeoInformatica, 15(2), 247–271.

    Article  Google Scholar 

  • Guilford, T., Meade, J., Willis, J., Phillips, R., Boyle, D., Roberts, S., et al. (2009). Migration and stopover in a small pelagic seabird, the manx shearwater puffinus puffinus: Insights from machine learning. Proceedings of the Royal Society B: Biological Sciences, 276(1660), 1215–1223.

    Article  Google Scholar 

  • Han, J., & Kamber, M. (2006). Data mining: Concepts and techniques. Amsterdam: Morgan Kaufmann Publishers.

    Google Scholar 

  • Hand, D. J., Manilla, H., & Smyth, P. (2001). Principles of data mining. Cambridge, MA: MIT Press.

    Google Scholar 

  • Huang, Y., Chen, C. & Dong, P. (2008). Modeling herds and their evolvements from trajectory data. Proceedings of Fifth International Conference on Geographic Information Science.

    Google Scholar 

  • Jeung, H., Shen, H. T., & Zhou, X. (2008a). Convoy queries in spatio-temporal databases. In 2008 IEEE 24th International Conference on Data Engineering (pp. 1457–1459), Cancun, Mexico.

    Google Scholar 

  • Jeung, H., Yiu, M. L., Zhou, X., Jensen, C. S., & Shen, H. T. (2008b). Discovery of convoys in trajectory databases. Proceedings of the VLDB Endowment, 1(1), 1068–1080.

    Article  Google Scholar 

  • Keim, D., Andrienko, G., Fekete, J.-D., Görg, C., Kohlhammer, J. & Melançon, G. (2008). Visual analytics: Definition, process, and challenges. In A. Kerren, J. Stasko, J.-D. Fekete, C. North (Eds.), Information visualization. Lecture Notes in Computer Science (Vol. 4950, pp. 154–175). Berlin: Springer.

    Google Scholar 

  • Laube, P. (2009) Progress in movement pattern analysis. In B. Gottfried & H. Aghajan (Eds.), Behaviour monitoring and interpretation, BMI, smart environments. Ambient Intelligence and Smart Environments (Vol. 3, pp. 43–71). Amsterdam, NL: IOS Press.

    Google Scholar 

  • Laube, P., Berg, M., Kreveld, M., et al. (2008a). Spatial support and spatial confidence for spatial association rules. In A. Ruas & C. Gold (Eds.), Headway in spatial data handling. Berlin: Springer.

    Google Scholar 

  • Laube, P., Dennis, T., Walker, M., & Forer, P. (2007). Movement beyond the snapshot–dynamic analysis of geospatial lifelines. Computers, Environment and Urban Systems, 31(5), 481–501.

    Article  Google Scholar 

  • Laube, P., Duckham, M., & Palaniswami, M. (2011a). Deferred decentralized movement pattern mining for geosensor networks. International Journal of Geographical Information Science, 25(2), 273–292.

    Article  Google Scholar 

  • Laube, P., Duckham, M., & Wolle, T. (2008b). Decentralized movement pattern detection amongst mobile geosensor nodes. In T. J. Cova, K. Beard, M. F. Goodchild, & A. U. Frank (Eds.), GIScience 2008. Lecture Notes in Computer Science (Vol. 5266, pp. 199–216). Berlin: Springer.

    Google Scholar 

  • Laube, P., Gottfried, B., Klippel, A., Billen, R., & van de Weghe, N. (2011b). Report on the first workshop on movement pattern analysis MPA10. JOSIS, 1(2), 127–133.

    Google Scholar 

  • Laube, P., & Purves, R. (2006). An approach to evaluating motion pattern detection techniques in spatio-temporal data. Computers, Environment and Urban Systems, 30(3), 347–374.

    Article  Google Scholar 

  • Laube, P., & Purves, R. S. (2011). How fast is a cow? Cross-scale analysis of movement data. Transactions in GIS, 15(3), 401–418.

    Article  Google Scholar 

  • Laube, P., van Kreveld, M., & Imfeld, S. (2005). Finding REMO–detecting relative motion patterns in geospatial lifelines. In P. F. Fisher (Ed.), Developments in Spatial Data Handling, Proceedings of the 11th International Symposium on Spatial Data Handling (pp. 201–214). Berlin, DE: Springer.

    Google Scholar 

  • Merki, M., & Laube, P. (2012). Detecting reaction movement patterns in trajectory data. In J. Gensel, D. Josselin, & D. Vandenbroucke (Eds.), AGILE’2012 International Conference on Geographic Information Science. FR: Avignon.

    Google Scholar 

  • Miller, H., & Han, J. (2009). Geographic data mining and knowledge discovery. Boca Raton: CRC Press.

    Google Scholar 

  • Mohammad, Y., & Nishida, T. (2010). Mining causal relationships in multidimensional time series. In E. Szczerbicki & N. Nguyen (Eds.), Smart information and knowledge management. Studies in Computational Intelligence (Vol. 260, pp. 309–338). Berlin: Springer.

    Google Scholar 

  • Nagy, M., Akos, Z., Biro, D., & Vicsek, T. (2010). Hierarchical group dynamics in pigeon flocks. Nature, 464(7290), 890–893.

    Article  Google Scholar 

  • Orellana, D. (2012). Exploring Pedestrian Movement Patterns (PhD thesis, Wageningen University).

    Google Scholar 

  • Orellana, D., Bregt, A. K., Ligtenberg, A., & Wachowicz, M. (2012). Exploring visitor movement patterns in natural recreational areas. Tourism Management, 33(3), 672–682.

    Article  Google Scholar 

  • Orellana, D. & Renso, C. (2010). Developing an interactions ontology for characterising pedestrian movement behaviour. In Movement-aware applications for sustainable mobility: Technologies and approaches (pp. 62–86). IGI Global.

    Google Scholar 

  • Orellana, D., & Wachowicz, M. (2011). Exploring patterns of movement suspension in pedestrian mobility. Geographical Analysis, 43(3), 241–260.

    Article  Google Scholar 

  • Pelekis, N., Andrienko, G., Andrienko, N., Kopanakis, I., Marketos, G., & Theodoridis, Y. (2012). Visually exploring movement data via similarity-based analysis. Journal of Intelligent Information Systems, 38(2), 343–391.

    Article  Google Scholar 

  • Peterson, R. O., Jacobs, A. K., Drummer, T. D., Mech, L. D., & Smith, D. W. (2002). Leadership behavior in relation to dominance and reproductive status in gray wolves. Canis lupus. Canadian Journal of Zoology, 80(8), 1405–1412.

    Article  Google Scholar 

  • Randell, D. A., Cui, Z., & Cohn, A. G. (1992). A spatial logic based on regions and connection. KR, 92, 165–176.

    Google Scholar 

  • Richter, K.-F., Schmid, F., & Laube, P. (2012). Semantic trajectory compression: Representing urban movement in a nutshell. JOSIS, 4, 3–30.

    Google Scholar 

  • Rinzivillo, S., Pedreschi, D., Nanni, M., Giannotti, F., Andrienko, N., & Andrienko, G. (2008). Visually driven analysis of movement data by progressive clustering. Information Visualization, 7(3–4), 225–239.

    Article  Google Scholar 

  • Rykiel, E. J. J. (1996). Testing ecological models: The meaning of validation. Ecological Modelling, 90(3), 229–244.

    Article  Google Scholar 

  • Schreck, T., Bernard, J., von Landesberger, T., & Kohlhammer, J. (2009). Visual cluster analysis of trajectory data with interactive Kohonen maps. Information Visualization, 8(1), 14–29.

    Article  Google Scholar 

  • Sester, M., Feuerhake, U., Kuntzsch, C., & Zhang, L. (2012). Revealing underlying structure and behaviour from movement data. KI, 26(3), 223–231.

    Google Scholar 

  • Shamoun-Baranes, J., Bom, R., van Loon, E. E., Ens, B. J., Oosterbeek, K., & Bouten, W. (2012a). From sensor data to animal behaviour: An oystercatcher example. PLoS ONE, 7(5), e37997.

    Article  Google Scholar 

  • Shamoun-Baranes, J., van Loon, E. E., Purves, R. S., Speckmann, B., Weiskopf, D., & Camphuysen, C. J. (2012b). Analysis and visualization of animal movement. Biology Letters, 8(1), 6–9.

    Article  Google Scholar 

  • Shapiro, L. G., & Stockman, G. C. (2001). Computer vision. New Jersey: Prentice-Hall.

    Google Scholar 

  • Silberschatz, A., & Tuzhilin, A. (1996). What makes patterns interesting in knowledge discovery systems. IEEE Transactions on Knowledge and Data Engineering, 8(6), 970–974.

    Article  Google Scholar 

  • Spaccapietra, S., Parent, C., Damiani, M. L., de Macedo, J. A., Portoa, F., & Vangenot, C. (2008). A conceptual view on trajectories. Data and Knowledge Engineering, 65(1), 126–146.

    Article  Google Scholar 

  • Thomas, J. J., & Cook, K. A. (2006). A visual analytics agenda. IEEE Computer Graphics and Applications, 26(1), 10–13.

    Article  Google Scholar 

  • Tufte, E., & Graves-Morris, P. (1983). The visual display of quantitative information (Vol. 31). Cheshire, CT: Graphics Press.

    Google Scholar 

  • Van de Weghe, N., Cohn, A. G., Bogaert, P., & De Maeyer, P. (2004). Representation of moving objects along a road network. In Proceedings of the 12th International Conference on Geoinformatics, Citeseer.

    Google Scholar 

  • Vlachos, M., Gunopulos, D., & Das, G. (2004). Rotation invariant distance measures for trajectories. In Proceedings of the 10th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 707–712). Seattle, WA. ACM.

    Google Scholar 

  • Vlachos, M., Gunopulos, D., & Kollios, G. (2002a). Robust similarity measures for mobile object trajectories. In Preceedings of 13th International Workshop on Database and Expert Systems Applications (pp. 721–728). IEEE Computer Society.

    Google Scholar 

  • Vlachos, M., Kollios, G., & Gunopulos, D. (2002b). Discovering similar multidimensional trajectories. In Proceedings of 18th International Converence on Data Engineering (ICDE’02).

    Google Scholar 

  • Wachowicz, M., Ong, R., Renso, C., & Nanni, M. (2011). Finding moving flock patterns among pedestrians through collective coherence. International Journal of Geographical Information Science, 25(11), 1849–1864.

    Article  Google Scholar 

  • Van de Weghe, N., Cohn, A. G., De Tré, G., & De Maeyer, P. (2006). A qualitative trajectory calculus as a basis for representing moving objects in geographical information systems. Control and Cybernetics, 35(1), 97–119.

    Google Scholar 

  • Wood, Z., & Galton, A. (2009a). Classifying collective motion. In B. Gottfried & H. Aghajan (Eds.), Behaviour monitoring and interpretation–BMI–smart environments. Ambient Intelligence and Smart Environments (Vol. 3, pp. 129–155). Amsterdam, NL: IOS Press.

    Google Scholar 

  • Wood, Z., & Galton, A. (2009b). A taxonomy of collective phenomena. Applied Ontology, 4(3), 267–292.

    Google Scholar 

  • Yoon, H. & Shahabi, C. (2008). Robust time-referenced segmentation of moving object trajectories. In 8th IEEE International Conference on Data Mining (ICDM ’08) (pp. 1121–1126).

    Google Scholar 

  • Zhang, Q., Slingsby, A., Dykes, J., Wood, J., Kraak, M.-J., Blok, C. A., & Ahas, R. (2013). Visual analysis design to support research into movement and use of space in tallinn: A case study. Information Visualization. (In Press).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Laube .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 The Author(s)

About this chapter

Cite this chapter

Laube, P. (2014). Movement Mining. In: Computational Movement Analysis. SpringerBriefs in Computer Science. Springer, Cham. https://doi.org/10.1007/978-3-319-10268-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-10268-9_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-10267-2

  • Online ISBN: 978-3-319-10268-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics