Movement Spaces and Movement Traces

  • Patrick LaubeEmail author
Part of the SpringerBriefs in Computer Science book series (BRIEFSCOMPUTER)


The analysis of the observed movement by means of computers requires abstraction, conceptual modeling, and formalization of the moving entities and the spaces embedding that movement. This preliminary but crucial stage of Computational Movement Analysis (CMA) requires modeling choices but is also constrained by the data sources at hand. This chapter investigates how movement can be modeled from the various data sources contributing to CMA, and discusses implications of the characteristics of models and sources on how movement can be captured and characterized, structured and analyzed.


Movement Data Transportation Network Analysis Scale Movement Space Movement Trace 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Ahas, R., Silm, S., Järv, O., Saluveer, E., & Tiru, M. (2010). Using mobile positioning data to model locations meaningful to users of mobile phones. Journal of Urban Technology, 17(1), 3–27.CrossRefGoogle Scholar
  2. Ahas, R., Silm, S., Saluveer, E., & Järv, O. (2009). Modelling home and work locations of populations using passive mobile positioning data. In G. Gartner & K. Rehrl (Eds.), Location based services and telecartography II (pp. 301–315)., Lecture Notes in Geoinformation and Cartography Berlin: Springer.CrossRefGoogle Scholar
  3. Andersson, M., Gudmundsson, J., Laube, P., & Wolle, T. (2008). Reporting leaders and followers among trajectories of moving point objects. GeoInformatica, 12(4), 497–528.CrossRefGoogle Scholar
  4. Andrienko, N., Andrienko, G., Pelekis, N., & Spaccapietra, S. (2008). Basic concepts of movement data. In F. Giannotti & D. Pedreschi (Eds.), Mobility, data mining and privacy (pp. 15–38). Berlin: Springer.CrossRefGoogle Scholar
  5. Benkert, M., Gudmundsson, J., Hübner, F., & Wolle, T. (2008). Reporting flock patterns. Computational Geometry, 41(3), 111–125.CrossRefzbMATHMathSciNetGoogle Scholar
  6. Bleisch, S., Duckham, M., Galton, A., Laube, P., & Lyon, J. (2014). Mining candidate causal relationships in movement patterns. International Journal of Geographical Information Science, 28(2), 363–382.CrossRefGoogle Scholar
  7. Borger, L., Franconi, N., De Michele, G., Gantz, A., Meschi, F., Manica, A., et al. (2006). Effects of sampling regime on the mean and variance of home range size estimates. Journal of Animal Ecology, 75(6), 1393–1405.CrossRefGoogle Scholar
  8. Both, A., Duckham, M., Laube, P., Wark, T., & Yeoman, J. (2013). Decentralized monitoring of moving objects in a transportation network augmented with checkpoints. The Computer Journal, 56(12), 1432–1449.CrossRefGoogle Scholar
  9. Cao, H., & Wolfson, O. (2005). Nonmaterialized motion information in transport networks. In T. Eiter & L. Libkin (Eds.), Database theory—ICDT 2005, proceedings (Vol. 3363, pp. 173–188)., Lecture Notes in Computer Science Berlin: Springer.CrossRefGoogle Scholar
  10. Delafontaine, M., Versichele, M., Neutens, T., & Van de Weghe, N. (2012). Analysing spatiotemporal sequences in bluetooth tracking data. Applied Geography, 34, 659–668.CrossRefGoogle Scholar
  11. Dennis, T. E., Chen, W. C., Koefoed, I. M., Lacoursiere, C. J., Walker, M. M., Laube, P., et al. (2010). Performance characteristics of small global-positioning-system tracking collars for terrestrial animals. Wildlife Biology in Practice, 6(1), 14–31.CrossRefGoogle Scholar
  12. Dodge, S., Laube, P., & Weibel, R. (2012). Movement similarity assessment using symbolic representation of trajectories. International Journal of Geographical Information Science, 26(9), 1563–1588.CrossRefGoogle Scholar
  13. Dodge, S., Weibel, R., & Lautenschütz, A.-K. (2008). Towards a taxonomy of movement patterns. Information Visualization, 7(3–4), 240–252.CrossRefGoogle Scholar
  14. Du Mouza, C., & Rigaux, P. (2005). Mobility patterns. GeoInformatica, 9(4), 297–319.CrossRefGoogle Scholar
  15. Fisher, P., Wood, J., & Cheng, T. (2004). Where is Helvellyn? Fuzziness of multi-scale landscape morphometry. Transactions of the Institute of British Geographers, 29(1), 106–128.CrossRefGoogle Scholar
  16. Fryxell, J. M., Hazell, M., Börger, L., Dalziel, B. D., Haydon, D. T., Morales, J. M., et al. (2008). Multiple movement modes by large herbivores at multiple spatiotemporal scales. Proceedings of the National Academy of Sciences, 105(49), 19114–19119.CrossRefGoogle Scholar
  17. Giannotti, F., & Pedreschi, D. (2008). Mobility, data mining and privacy: A vision of convergence. In F. Giannotti & D. Pedreschi (Eds.), Mobility, data mining and privacy (pp. 1–11). Berlin: Springer.CrossRefGoogle Scholar
  18. Gong, H., Chen, C., Bialostozky, E., & Lawson, C. T. (2012). A GPS/GIS method for travel mode detection in New York City. Computers, Environment and Urban Systems, 36(2), 131–139.CrossRefGoogle Scholar
  19. Gudmundsson, J., Katajainen, J., Merrick, D., Ong, C., & Wolle, T. (2009). Compressing spatio-temporal trajectories. Computational Geometry, 42(9), 825–841.CrossRefzbMATHMathSciNetGoogle Scholar
  20. Gudmundsson, J., van Kreveld, M., & Speckmann, B. (2007). Efficient detection of patterns in 2D trajectories of moving points. GeoInformatica, 11(2), 195–215.CrossRefGoogle Scholar
  21. Hägerstrand, T. (1970). What about people in regional science. Papers of the Regional Science Association, 24, 7–21.CrossRefGoogle Scholar
  22. Hurford, A. (2009). GPS measurement error gives rise to spurious 180\(^{\circ }\)-turning angles and strong directional biases in animal movement data. PLoS ONE, 4(5), e5632.CrossRefGoogle Scholar
  23. Imfeld, S., Haller, R., & Laube, P. (2006). Positional accuracy of biological research data in GIS—A case study in the swiss national park. In M. Caetano & M. Painho (Eds.), 7th International Symposium on Spatial Accuracy Assessment in Natural Resources and Environmental Sciences (pp. 275–280). Portugal: Lisbon.Google Scholar
  24. Jerde, C. L., & Visscher, D. R. (2005). GPS measurement error influences on movement model parameterization. Ecological Applications, 15(3), 806–810.CrossRefGoogle Scholar
  25. Kuijpers, B., Miller, H. J., Neutens, T., & Othman, W. (2010). Anchor uncertainty and space-time prisms on road networks. International Journal of Geographical Information Science, 24(8), 1223–1248.CrossRefGoogle Scholar
  26. Laube, P. (2009). Progress in movement pattern analysis. In B. Gottfried & H. Aghajan (Eds.), Behaviour Monitoring and Interpretation, BMI, Smart Environments (Vol. 3, pp. 43–71)., Ambient Intelligence and Smart Environments Amsterdam, NL: IOS Press.Google Scholar
  27. Laube, P., & Dennis, T. (2006). Exploratory analysis of movement trajectories. In GeoCart,. (2006). National Cartographic Conference. Auckland, NZ.Google Scholar
  28. Laube, P., Dennis, T., Walker, M., & Forer, P. (2007). Movement beyond the snapshot - dynamic analysis of geospatial lifelines. Computers, Environment and Urban Systems, 31(5), 481–501.CrossRefGoogle Scholar
  29. Laube, P., Duckham, M., & Palaniswami, M. (2011). Deferred decentralized movement pattern mining for geosensor networks. International Journal of Geographical Information Science, 25(2), 273–292.CrossRefGoogle Scholar
  30. Laube, P., Duckham, M., & Wolle, T. (2008). Decentralized movement pattern detection amongst mobile geosensor nodes. In T. J. Cova, K. Beard, M. F. Goodchild, & A. U. Frank (Eds.), GIScience 2008 (Vol. 5266, pp. 199–216)., Lecture Notes in Computer Science, Springer: Berlin Heidelberg.Google Scholar
  31. Laube, P., Duckham, M., Worboys, M., & Joyce, T. (2010). Decentralized spatial computing in urban environments. In B. Jiang & X. Yao (Eds.), Geospatial analysis and modelling of urban structure and dynamics, geojournal library (pp. 53–74). Berlin: Springer.CrossRefGoogle Scholar
  32. Laube, P., & Purves, R. S. (2011). How fast is a cow? Cross-scale analysis of movement data. Transactions in GIS, 15(3), 401–418.CrossRefGoogle Scholar
  33. Merki, M., & Laube, P. (2012). Detecting reaction movement patterns in trajectory data. In J. Gensel, D. Josselin, & D. Vandenbroucke (Eds.), AGILE’2012 International Conference on Geographic Information Science. FR: Avignon.Google Scholar
  34. Montello, D. (2001). Scale in geography. In N. J. Smelser & P. B. Baltes (Eds.), International Encyclopedia of the social and behavioral sciences (pp. 3501–13504). Oxford: Pergamon Press.Google Scholar
  35. Moreira, A., Santos, M. Y., Wachowicz, M., & Orellana, D. (2010). The impact of data quality in the context of pedestrian movement analysis. In M. Painho, M. Y. Santos, & H. Pundt (Eds.), Geospatial thinking (pp. 61–78)., Lecture Notes in Geoinformation and Cartography Berlin: Springer.CrossRefGoogle Scholar
  36. Nams, V. O. (2005). Using animal movement paths to measure response to spatial scale. Oecologia, 143(2), 179–188.CrossRefGoogle Scholar
  37. Nathan, R., Getz, W. M., Revilla, E., Holyoak, M., Kadmon, R., Saltz, D., et al. (2008). A movement ecology paradigm for unifying organismal movement research. Proceedings of the National Academy of Sciences, 105(49), 19052–19059.CrossRefGoogle Scholar
  38. Noyon, V., Devogele, T., & Claramunt, C. (2005). A formal model for representing point trajectories in two-dimensional spaces. In J. Akoka, S. Liddle, I.-Y. Song, M. Bertolotto, I. Comyn-Wattiau, W.-J. Heuvel, M. Kolp, J. Trujillo, C. Kop, & H. Mayr (Eds.), Perspectives in conceptual modeling (Vol. 3770, pp. 208–217)., Lecture Notes in Computer Science Berlin: Springer.CrossRefGoogle Scholar
  39. Peuquet, D. J. (2002). Representation of space and time. London, UK: The Guilford Press.Google Scholar
  40. Postlethwaite, C. M., Brown, P., & Dennis, T. E. (2013). A new multi-scale measure for analysing animal movement data. Journal of Theoretical Biology, 317, 175–185.CrossRefMathSciNetGoogle Scholar
  41. Richter, K.-F., Schmid, F., & Laube, P. (2012). Semantic trajectory compression: Representing urban movement in a nutshell. JOSIS, 4, 3–30.Google Scholar
  42. Shamoun-Baranes, J., van Loon, E. E., Purves, R. S., Speckmann, B., Weiskopf, D., & Camphuysen, C. J. (2012). Analysis and visualization of animal movement. Biology Letters, 8(1), 6–9.CrossRefGoogle Scholar
  43. Silm, S., & Ahas, R. (2010). The seasonal variability of population in estonian municipalities. Environment and Planning A, 42(10), 2527–2546.CrossRefGoogle Scholar
  44. Spaccapietra, S., Parent, C., Damiani, M. L., de Macedo, J. A., Portoa, F., & Vangenot, C. (2008). A conceptual view on trajectories. Data and Knowledge Engineering, 65(1), 126–146.CrossRefGoogle Scholar
  45. Thériault, M., Claramunt, C., Séguin, A. M., & Villeneuve, P. (2002). Temporal GIS and statistical modelling of personal lifelines. In D. E. Richardson & P. van Oosterom (Eds.), Advances in Geographic Information Systems Research II: Proceedings ot the Interantional Symposium on Spatial Data Handling, Delft (pp. 433–449). Berlin: Springer.Google Scholar
  46. Tomlin, C. D. (1990). Geographic information systems and cartographic modeling. Englewood Cliffs: Prentice Hall.Google Scholar
  47. Trajcevski, G., Wolfson, O., Hinrichs, K., & Chamberlain, S. (2004). Managing uncertainty in moving objects databases. ACM Transactions on Database Systems (TODS), 29(3), 463–507.CrossRefGoogle Scholar
  48. Versichele, M., Neutens, T., Delafontaine, M., & Van de Weghe, N. (2012). The use of bluetooth for analysing spatiotemporal dynamics of human movement at mass events: A case study of the ghent festivities. Applied Geography, 32(2), 208–220.CrossRefGoogle Scholar
  49. Worboys, M., & Duckham, M. (2004). GIS—A computing perspective (2nd ed.). New York: CRC Press.Google Scholar
  50. Yan, Z., Macedo, J., Parent, C., & Spaccapietra, S. (2008). Trajectory ontologies and queries. Transactions in GIS, 12, 75–91.CrossRefGoogle Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  1. 1.Institute of Natural Resource SciencesZurich University of Applied SciencesWädenswilSwitzerland

Personalised recommendations