Skip to main content

Molecular Approaches to Explore Natural and Food-Compound Modulators in Cancer Epigenetics and Metabolism

  • Chapter
  • First Online:
Foodinformatics

Abstract

Chemical constituents isolated from food and other natural sources can interfere with many biological targets in human beings. Compounds like curcumin, genistein, plant and food polyphenols, resveratrol, and sulforaphane are able to modulate the biological activity of cell pathways and its functions in relation to metabolism and epigenetics. While the mechanisms by which these compounds exert their roles are still far to be fully elucidated, their usage has emerged in the past years for conceiving new cancer prevention strategies and novel therapeutic interventions. A deeper understanding on how metabolism and epigenetics are influenced by food and natural components can be achieved at molecular level by using a variety of chemoinformatic and computer-aided techniques that include data mining, molecular databasing, and molecular design techniques like pharmacophore-based methods or molecular docking. In this chapter, we will describe these in silico techniques as valuable tools to explore molecular determinants, and pharmacological role of food and other natural constituents in cancer epigenetics and metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bushnell DA, Cramer P, Kornberg RD (2002) Structural basis of transcription: alpha-amanitin-RNA polymerase II cocrystal at 2.8 A resolution. P Natl Acad Sci U S A 99:1218–1222

    CAS  Google Scholar 

  2. Beher D, Wu J, Cumine S, Kim KW, Lu S-C, Atangan L, Wang M (2009) Resveratrol is not a direct activator of SIRT1 enzyme activity. Chem Biol Drug Des 74:619–624

    CAS  Google Scholar 

  3. Denu JM (2012) Fortifying the link between SIRT1, resveratrol, and mitochondrial function. Cell Metab 15:566–567

    CAS  Google Scholar 

  4. Price NL, Gomes AP, Ling AJY et al (2012) SIRT1 is required for AMPK activation and the beneficial effects of resveratrol on mitochondrial function. Cell Metab 15:675–690

    CAS  Google Scholar 

  5. Moniot S, Weyand M, Steegborn C (2012) Structures, substrates, and regulators of mammalian sirtuins—opportunities and challenges for drug development. Front Pharmacol 3:16

    CAS  Google Scholar 

  6. Bruzzone S, Parenti MD, Grozio A, Ballestrero A, Bauer I, Del Rio A, Nencioni A (2013) Rejuvenating sirtuins: the rise of a new family of cancer drug targets. Curr Pharm Des 19:614–623

    CAS  Google Scholar 

  7. Newman DJ, Cragg GM (2012) Natural products as sources of new drugs over the 30 years from 1981 to 2010. J Nat Prod 75:311–335

    CAS  Google Scholar 

  8. Hong J (2011) Role of natural product diversity in chemical biology. Curr Opin Chem Biol 15:350–354

    CAS  Google Scholar 

  9. Sheridan C (2012) Recasting natural product research. Nat Biotechnol 30:385–387

    CAS  Google Scholar 

  10. Paterson I, Anderson EA (2005) Chemistry. The renaissance of natural products as drug candidates. Science 310:451–453

    Google Scholar 

  11. Pauli GF, Chen S-N, Friesen JB, McAlpine JB, Jaki BU (2012) Analysis and purification of bioactive natural products: the AnaPurNa study. J Nat Prod 75:1243–1255

    CAS  Google Scholar 

  12. Handelsman J, Rondon MR, Brady SF, Clardy J, Goodman RM (1998) Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products. Chem Biol 5:R245–R249

    CAS  Google Scholar 

  13. Medina-Franco JL, Martínez-Mayorga K, Peppard TL, Del Rio A (2012) Chemoinformatic analysis of GRAS (Generally Recognized as Safe) flavor chemicals and natural products. PLoS One 7:e50798

    CAS  Google Scholar 

  14. Barbosa-Pereira L, Pocheville A, Angulo I, Paseiro-Losada P, Cruz JM (2013) Fractionation and purification of bioactive compounds obtained from a brewery waste stream. Biomed Res Int 2013(2013):408491

    Google Scholar 

  15. Angela A, Meireles M (eds) (2008) Extracting bioactive compounds for food products. CRC, Boca Raton. doi:10.1201/9781420062397

    Google Scholar 

  16. Kinghorn AD, Chin Y-W, Swanson SM (2009) Discovery of natural product anticancer agents from biodiverse organisms. Curr Opin Drug Discov Dev 12:189–196

    CAS  Google Scholar 

  17. Newman DJ (2008) Natural products as leads to potential drugs: an old process or the new hope for drug discovery? J Med Chem 51:2589–2599

    CAS  Google Scholar 

  18. Gordaliza M (2008) Natural products as leads to anticancer drugs. Clin Transl Oncol 9:767–776

    Google Scholar 

  19. Salminen A, Lehtonen M, Suuronen T, Kaarniranta K, Huuskonen J (2008) Terpenoids: natural inhibitors of NF-kappaB signaling with anti-inflammatory and anticancer potential. Cell Mol Life Sci 65:2979–2999

    CAS  Google Scholar 

  20. Merfort I (2011) Perspectives on sesquiterpene lactones in inflammation and cancer. Curr Drug Targets 12:1560–1573

    CAS  Google Scholar 

  21. Ghantous A, Gali-Muhtasib H, Vuorela H, Saliba NA, Darwiche N (2010) What made sesquiterpene lactones reach cancer clinical trials? Drug Discov Today 15:668–678

    CAS  Google Scholar 

  22. Janecka A, Wyrębska A, Gach K, Fichna J, Janecki T (2012) Natural and synthetic α-methylenelactones and α-methylenelactams with anticancer potential. Drug Discov Today 17:561–572

    CAS  Google Scholar 

  23. Gulder TAM, Moore BS (2010) Salinosporamide natural products: Potent 20 S proteasome inhibitors as promising cancer chemotherapeutics. Angew Chem Int Edit 49:9346–9367

    CAS  Google Scholar 

  24. vel Szic KS, Palagani A, Hassannia B (2011) Phytochemicals and cancer chemoprevention: epigenetic friends or foe? In: Rasooli I (ed) Phytochemicals—Bioactivities and Impact on Health. InTech, Croatia, pp 159–198. doi:10.5772/28499

    Google Scholar 

  25. vel Szic KS, Ndlovu MN, Haegeman G, Vanden Berghe W (2010) Nature or nurture: let food be your epigenetic medicine in chronic inflammatory disorders. Biochem Pharmacol 80:1816–1832

    Google Scholar 

  26. Galluzzi L, Senovilla L, Zitvogel L, Kroemer G (2012) The secret ally: immunostimulation by anticancer drugs. Nat Rev Drug Discov 11:215–233

    CAS  Google Scholar 

  27. Cavallo F, De Giovanni C, Nanni P, Forni G, Lollini P-L (2011) 2011: the immune hallmarks of cancer. Cell 60:319–326

    CAS  Google Scholar 

  28. Cairns RA, Harris IS, Mak TW (2011) Regulation of cancer cell metabolism. Nat Rev Cancer 11:85–95

    CAS  Google Scholar 

  29. Gerhäuser C (2012) Cancer cell metabolism, epigenetics and the potential influence of dietary components—a perspective. Biomed Res 23:1–21

    Google Scholar 

  30. Semenza GL (2011) A return to cancer metabolism. J Mol Med 89:203–204

    Google Scholar 

  31. Koppenol WH, Bounds PL, Dang CV (2011) Otto Warburg’s contributions to current concepts of cancer metabolism. Nat Rev Cancer 11:325–337

    CAS  Google Scholar 

  32. Best JD, Carey N (2010) Epigenetic therapies for non-oncology indications. Drug Discov Today 15:1008–1014

    CAS  Google Scholar 

  33. Best JD, Carey N (2010) Epigenetic opportunities and challenges in cancer. Drug Discov Today 15:65–70

    CAS  Google Scholar 

  34. Dhanak D (2012) Cracking the code: the promise of epigenetics. ACS Med Chem Lett 3(7):521–523. doi:10.1021/ml300141h

    CAS  Google Scholar 

  35. Ellis L, Atadja PW, Johnstone RW (2009) Epigenetics in cancer: targeting chromatin modifications. Mol Cancer Ther 8:1409–1420

    CAS  Google Scholar 

  36. Altucci L, Minucci S (2009) Epigenetic therapies in haematological malignancies: searching for true targets. Eur J Cancer 45:1137–1145

    CAS  Google Scholar 

  37. Chi P, Allis CD, Wang GG (2010) Covalent histone modifications—miswritten, misinterpreted and mis-erased in human cancers. Nat Rev Cancer 10:457–469

    CAS  Google Scholar 

  38. Herranz M, Esteller M (2006) New therapeutic targets in cancer: the epigenetic connection. Clin Transl Oncol 8:242–249

    CAS  Google Scholar 

  39. Graham JS, Kaye SB, Brown R (2009) The promises and pitfalls of epigenetic therapies in solid tumours. Eur J Cancer 45:1129–1136

    CAS  Google Scholar 

  40. Santos-Rosa H, Caldas C (2005) Chromatin modifier enzymes, the histone code and cancer. Eur J Cancer 41:2381–2402

    CAS  Google Scholar 

  41. Rodríguez-Paredes M, Esteller M (2011) Cancer epigenetics reaches mainstream oncology. Nat Med 17:330–339

    Google Scholar 

  42. Rius M, Lyko F (2012) Epigenetic cancer therapy: rationales, targets and drugs. Oncogene 31:4257–4265

    Google Scholar 

  43. Kulis M, Esteller M (2010) DNA methylation and cancer. Adv Genet 70:27–56

    Google Scholar 

  44. Meeran SM, Ahmed A, Tollefsbol TO (2010) Epigenetic targets of bioactive dietary components for cancer prevention and therapy. Clin Epigenetics 1:101–116

    CAS  Google Scholar 

  45. Ljungman M (2009) Targeting the DNA damage response in cancer. Chem Rev 109:2929–2950

    CAS  Google Scholar 

  46. Claes B, Buysschaert I, Lambrechts D (2010) Pharmaco-epigenomics: discovering therapeutic approaches and biomarkers for cancer therapy. Heredity 105:152–160

    CAS  Google Scholar 

  47. Pollock RM, Richon VM (2009) Epigenetic approaches to cancer therapy. Drug Discov Today Ther Strategy 6:71–79

    CAS  Google Scholar 

  48. Spannhoff A, Sippl W, Jung M (2009) Cancer treatment of the future: inhibitors of histone methyltransferases. Int J Biochem Cell Biol 41:4–11

    CAS  Google Scholar 

  49. Sala A, Corona DFV (2008) Epigenetics: More than genetics. Fly 2:165–168

    Google Scholar 

  50. Baylin SB (2008) Epigenetics and cancer. Mol Basis Cancer. 2:57–65

    Google Scholar 

  51. Lohrum M, Stunnenberg HG, Logie C (2007) The new frontier in cancer research: deciphering cancer epigenetics. Int J Biochem Cell Biol 39:1450–1461

    CAS  Google Scholar 

  52. Inche AG, La Thangue NB (2006) Chromatin control and cancer-drug discovery: realizing the promise. Drug Discov Today 11:97–109

    CAS  Google Scholar 

  53. Bannister AJ, Kouzarides T (2011) Regulation of chromatin by histone modifications. Cell Res 21:381–395

    CAS  Google Scholar 

  54. Andreoli F, Barbosa AJM, Parenti MD, Del Rio A (2013) Modulation of epigenetic targets for anticancer therapy: clinicopathological relevance, structural data and drug discovery perspectives. Curr Pharm Des 19:578–613

    CAS  Google Scholar 

  55. Hou H, Yu H (2010) Structural insights into histone lysine demethylation. Curr Opin Struct Biol 20:739–748

    CAS  Google Scholar 

  56. Sippl W, Jung M (2009) Epigenetic drug discovery special issue. Bioorg Med Chem 19:3603–3604

    Google Scholar 

  57. Sippl W, Jung M (2009) Epigenetic targets in drug discovery. Wiley, Weinheim

    Google Scholar 

  58. Lombardi PM, Cole KE, Dowling DP, Christianson DW (2011) Structure, mechanism, and inhibition of histone deacetylases and related metalloenzymes. Curr Opin Struct Biol 21:735–743

    CAS  Google Scholar 

  59. Yoo J, Medina-Franco JL (2012) Inhibitors of DNA methyltransferases: insights from computational studies. Curr Med Chem 19(21):3475–3487

    CAS  Google Scholar 

  60. Copeland RA, Solomon ME, Richon VM (2009) Protein methyltransferases as a target class for drug discovery. Nat Rev Drug Discov 8:724–732

    CAS  Google Scholar 

  61. Lohse B, Kristensen JL, Kristensen LH, Agger K, Helin K, Gajhede M, Clausen RP (2011) Inhibitors of histone demethylases. Bioorg Med Chem 19:3625–3636

    CAS  Google Scholar 

  62. Cho WC (2012) Exploiting the therapeutic potential of microRNAs in human cancer. Expert Opin Ther Targets 16:345–350

    CAS  Google Scholar 

  63. Esau CC, Monia BP (2007) Therapeutic potential for microRNAs. Adv Drug Deliv Rev 59:101–114

    CAS  Google Scholar 

  64. Bratkovič T, Glavan G, Strukelj B, Zivin M, Rogelj B (2012) Exploiting microRNAs for cell engineering and therapy. Biotechnol Adv 30:753–765

    Google Scholar 

  65. Ling H, Fabbri M, Calin GA (2013) MicroRNAs and other non-coding RNAs as targets for anticancer drug development. Nat Rev Drug Discov 12:847–865

    CAS  Google Scholar 

  66. De Santa F, Iosue I, Del Rio A, Fazi F (2013) microRNA biogenesis pathway as a therapeutic target for human disease and cancer. Curr Pharm Des 19:745–764

    CAS  Google Scholar 

  67. Bayley J-P, Devilee P (2012) The Warburg effect in 2012. Curr Opin Oncol 24:62–67

    CAS  Google Scholar 

  68. Le A, Cooper CR, Gouw AM, Dinavahi R, Maitra A, Deck LM, Royer RE, Vander Jagt DL, Semenza GL, Dang C V (2010) Inhibition of lactate dehydrogenase A induces oxidative stress and inhibits tumor progression. Proc Natl Acad Sci U S A 107:2037–2042

    CAS  Google Scholar 

  69. Salani B, Marini C, Del Rio A et al (2013) Metformin impairs glucose consumption and survival in Calu-1 cells by direct inhibition of hexokinase-II. Sci Rep 3:2070

    Google Scholar 

  70. Zhao Y, Butler EB, Tan M (2013) Targeting cellular metabolism to improve cancer therapeutics. Cell Death Dis 4:e532

    CAS  Google Scholar 

  71. Birsoy K, Sabatini DM, Possemato R (2012) Untuning the tumor metabolic machine: targeting cancer metabolism: a bedside lesson. Nat Med 18:1022–1023

    CAS  Google Scholar 

  72. Vander Heiden MG (2011) Targeting cancer metabolism: a therapeutic window opens. Nat Rev Drug Discov 10:671–684

    CAS  Google Scholar 

  73. Stefanska B, Karlic H, Varga F, Fabianowska-Majewska K, Haslberger A (2012) Epigenetic mechanisms in anti-cancer actions of bioactive food components—the implications in cancer prevention. Br J Pharmacol 167:279–297

    CAS  Google Scholar 

  74. Kirk H, Cefalu WT, Ribnicky D, Liu Z, Eilertsen KJ (2008) Botanicals as epigenetic modulators for mechanisms contributing to development of metabolic syndrome. Metabolism 57:16–23

    Google Scholar 

  75. Khan SI, Aumsuwan P, Khan IA, Walker LA, Dasmahapatra AK (2012) Epigenetic events associated with breast cancer and their prevention by dietary components targeting the epigenome. Chem Res Toxicol 25:61–73

    CAS  Google Scholar 

  76. Su Y, Shankar K, Rahal O, Simmen RCM (2011) Bidirectional signaling of mammary epithelium and stroma: implications for breast cancer—preventive actions of dietary factors. J Nutr Biochem 22:605–611

    CAS  Google Scholar 

  77. Lustberg MB, Ramaswamy B (2010) Epigenetic therapy in breast cancer. Curr Breast Cancer Rep 3:34–43

    Google Scholar 

  78. Ramaswamy B, Sparano JA (2010) Targeting epigenetic modifications for the treatment and prevention of breast cancer. Curr Breast Cancer Rep 2:198–207

    CAS  Google Scholar 

  79. Thornburg KL, Shannon J, Thuillier P, Turker MS (2010) In utero life and epigenetic predisposition for disease. Adv Genet 71:57–78

    CAS  Google Scholar 

  80. Piaz FD, Vassallo A, Rubio OC, Castellano S, Sbardella G, De Tommasi N (2011) Chemical biology of histone acetyltransferase natural compounds modulators. Mol Divers 15:401–416

    Google Scholar 

  81. Mantelingu K, Reddy BAA, Swaminathan V et al (2007) Specific inhibition of p300-HAT alters global gene expression and represses HIV replication. Chem Biol 14:645–657

    CAS  Google Scholar 

  82. Nyström M (2009) Diet and epigenetics in colon cancer. World J Gastroenterol 15:257

    Google Scholar 

  83. Duthie SJ (2011) Epigenetic modifications and human pathologies: cancer and CVD. P Nutr Soc 70:47–56

    CAS  Google Scholar 

  84. Van Engeland M, Herman JG (2010) Viewing the epigenetics of colorectal cancer through the window of folic acid effects. Cancer Prev Res 3:1509–1512

    CAS  Google Scholar 

  85. Garagnani P, Pirazzini C, Franceschi C (2013) Colorectal cancer microenvironment: among nutrition, gut microbiota, inflammation and epigenetics. Curr Pharm Des 19:765–778

    Google Scholar 

  86. Nencioni A, Bruzzone S, Del Rio A (2013) Editorial: NAD+ biosynthesis and signaling as an emerging area in medicinal chemistry. Curr Top Med Chem 13:2905–2906

    CAS  Google Scholar 

  87. Teperino R, Schoonjans K, Auwerx J (2010) Histone methyl transferases and demethylases; can they link metabolism and transcription? Cell Metab 12:321–327

    CAS  Google Scholar 

  88. Rajendran P, Williams DE, Ho E, Dashwood RH (2011) Metabolism as a key to histone deacetylase inhibition. Crit Rev Biochem Mol Biol 46:181–199

    CAS  Google Scholar 

  89. Petrelli A, Giordano S (2008) From single- to multi-target drugs in cancer therapy: when aspecificity becomes an advantage. Curr Med Chem 15:422–432

    CAS  Google Scholar 

  90. Talele TT, Khedkar SA, Rigby AC (2010) Successful applications of computer aided drug discovery: moving drugs from concept to the clinic. Curr Top Med Chem 10:127–141

    CAS  Google Scholar 

  91. Van Drie JH (2007) Computer-aided drug design: the next 20 years. J Comput Aided Mol Des 21:591–601

    Google Scholar 

  92. Borhani DW, Shaw DE (2012) The future of molecular dynamics simulations in drug discovery. J Comput Aided Mol Des 26:15–26

    CAS  Google Scholar 

  93. Moura Barbosa AJ, Del Rio A (2012) Freely accessible databases of commercial compounds for high- throughput virtual screenings. Curr Top Med Chem 12:866–877

    Google Scholar 

  94. Del Rio A, Barbosa AJM, Caporuscio F, Mangiatordi GF (2010) CoCoCo: a free suite of multiconformational chemical databases for high-throughput virtual screening purposes. Mol Biosyst 6:2122–2128

    CAS  Google Scholar 

  95. Del Rio A, Barbosa AJM, Caporuscio F (2011) Use of large multiconformational databases with structure-based pharmacophore models for fast screening of commercial compound collections. J Cheminform 3:P27

    Google Scholar 

  96. Bottegoni G, Favia AD, Recanatini M, Cavalli A (2012) The role of fragment-based and computational methods in polypharmacology. Drug Discov Today 17:23–34

    CAS  Google Scholar 

  97. Copeland RA, Olhava EJ, Scott MP (2010) Targeting epigenetic enzymes for drug discovery. Curr Opin Chem Biol 14:505–510

    CAS  Google Scholar 

  98. De Koning L, Corpet A, Haber JE, Almouzni G (2007) Histone chaperones: an escort network regulating histone traffic. Nat Struct Mol Biol 14:997–1007

    CAS  Google Scholar 

  99. Golbabapour S, Abdulla MA, Hajrezaei M (2011) A concise review on epigenetic regulation: insight into molecular mechanisms. Int J Mol Sci 12:8661–8694

    CAS  Google Scholar 

  100. Mai A, Cheng D, Bedford MT et al (2008) Epigenetic multiple ligands: mixed histone/protein methyltransferase, acetyltransferase, and class III deacetylase (sirtuin) inhibitors. J Med Chem 51:2279–2290

    CAS  Google Scholar 

  101. Suganuma T, Workman JL (2008) Crosstalk among histone modifications. Cell 135:604–607

    CAS  Google Scholar 

  102. Jones P (2012) Development of second generation epigenetic agents. Med Chem Comm 3:135

    CAS  Google Scholar 

  103. Mani S, Herceg Z (2010) DNA demethylating agents and epigenetic therapy of cancer. Adv Genet 70:327–340

    CAS  Google Scholar 

  104. Karberg S (2009) Switching on epigenetic therapy. Cell 139:1029–1031

    CAS  Google Scholar 

  105. Medina-Franco JL, Caulfield T (2011) Advances in the computational development of DNA methyltransferase inhibitors. Drug Discov Today 16:418–425

    CAS  Google Scholar 

  106. Kristensen LS, Nielsen HM, Hansen LL (2009) Epigenetics and cancer treatment. Eur J Pharmacol 625:131–142

    Google Scholar 

  107. Hamm CA, Costa FF (2011) The impact of epigenomics on future drug design and new therapies. Drug Discov Today 16:626–635

    CAS  Google Scholar 

  108. Heinke R, Carlino L, Kannan S, Jung M, Sippl W (2011) Computer- and structure-based lead design for epigenetic targets. Bioorg Med Chem 19:3605–3615

    CAS  Google Scholar 

  109. Yoo J, Medina-Franco JL (2011) Discovery and optimization of inhibitors of DNA methyltransferase as novel drugs for cancer therapy. In: Rundefeldt C (ed) Drug development—a case study based insight into modern strategies. InTech, Croatia

    Google Scholar 

  110. Neugebauer RC, Uchiechowska U, Meier R, Hruby H, Valkov V, Verdin E, Sippl W, Jung M (2008) Structure-activity studies on splitomicin derivatives as sirtuin inhibitors and computational prediction of binding mode. J Med Chem 51:1203–1213

    CAS  Google Scholar 

  111. Costantini S, Sharma A, Raucci R, Costantini M, Autiero I, Colonna G (2013) Genealogy of an ancient protein family: the Sirtuins, a family of disordered members. BMC Evol Biol 13:60

    CAS  Google Scholar 

  112. Sakkiah S, Arooj M, Kumar MR, Eom SH, Lee KW (2013) Identification of inhibitor binding site in human sirtuin 2 using molecular docking and dynamics simulations. PLoS One 8:e51429

    CAS  Google Scholar 

  113. Chen L (2011) Medicinal chemistry of sirtuin inhibitors. Curr Med Chem 18:1936–1946

    CAS  Google Scholar 

  114. Mak L, Liggi S, Tan L, Kusonmano K, Rollinger JM, Glen RC, Kirchmair J, Koutsoukas A (2012) Anti-cancer drug development: computational strategies to identify and target proteins involved in cancer metabolism. Curr Pharm Des 19(4):532–577

    Google Scholar 

  115. Manerba M, Vettraino M, Fiume L, Di Stefano G, Sartini A, Giacomini E, Buonfiglio R, Roberti M, Recanatini M (2012) Galloflavin (CAS 568–80-9): a novel inhibitor of lactate dehydrogenase. Chem Med Chem 7:311–317

    CAS  Google Scholar 

  116. Sanders MPA, Barbosa AJM, Zarzycka B, Nicolaes GAF, Klomp JPG, de Vlieg J, Del Rio A (2012) Comparative analysis of pharmacophore screening tools. J Chem Inf Model 52:1607–1620

    CAS  Google Scholar 

  117. Schuster D, Wolber G (2010) Identification of bioactive natural products by pharmacophore-based virtual screening. Curr Pharm Des 16:1666–1681

    CAS  Google Scholar 

  118. Galvez-Llompart M, Zanni R, García-Domenech R (2011) Modeling natural anti-inflammatory compounds by molecular topology. Int J Mol Sci 12:9481–9503

    CAS  Google Scholar 

  119. Gálvez-Llompart M, Recio MC, García-Domenech R (2011) Topological virtual screening: a way to find new compounds active in ulcerative colitis by inhibiting NF-κB. Mol Divers 15:917–926

    Google Scholar 

  120. Harvey AL (2008) Natural products in drug discovery. Drug Discov Today 13:894–901

    CAS  Google Scholar 

  121. Rosén J, Gottfries J, Muresan S, Backlund A, Oprea TI (2009) Novel chemical space exploration via natural products. J Med Chem 52:1953–1962

    Google Scholar 

  122. Singh N, Guha R, Giulianotti MA, Pinilla C, Houghten RA, Medina-Franco JL (2009) Chemoinformatic analysis of combinatorial libraries, drugs, natural products, and molecular libraries small molecule repository. J Chem Inf Model 49:1010–1024

    CAS  Google Scholar 

  123. Füllbeck M, Michalsky E, Dunkel M, Preissner R (2006) Natural products: sources and databases. Nat Prod Rep 23:347–356

    Google Scholar 

  124. Lachance H, Wetzel S, Kumar K, Waldmann H (2012) Charting, navigating, and populating natural product chemical space for drug discovery. J Med Chem 55:5989–6001

    CAS  Google Scholar 

  125. Yongye AB, Waddell J, Medina-Franco JL (2012) Molecular scaffold analysis of natural products databases in the public domain. Chem Biol Drug Des 80:717–724

    CAS  Google Scholar 

  126. Bauer RA, Wurst JM, Tan DS (2010) Expanding the range of “druggable” targets with natural product-based libraries: an academic perspective. Curr Opin Chem Biol 14:308–314

    CAS  Google Scholar 

  127. Kumar K, Waldmann H (2009) Synthesis of natural product inspired compound collections. Angew Chem Int Ed Engl 48:3224–3242

    CAS  Google Scholar 

  128. Over B, Wetzel S, Grütter C, Nakai Y, Renner S, Rauh D, Waldmann H (2012) Natural-product-derived fragments for fragment-based ligand discovery. Nat Chem 5:21–28

    Google Scholar 

  129. International network of food data systems. http://www.fao.org/infoods/infoods/en/ . Accessed 7 Sept 2014

  130. USDA National Nutrient Database. http://ndb.nal.usda.gov/. Accessed 7 Sept 2014

  131. FooDB. http://www.foodb.ca/. Accessed 7 Sept 2014

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Del Rio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Del Rio, A., Da Costa, F. (2014). Molecular Approaches to Explore Natural and Food-Compound Modulators in Cancer Epigenetics and Metabolism. In: Martinez-Mayorga, K., Medina-Franco, J. (eds) Foodinformatics. Springer, Cham. https://doi.org/10.1007/978-3-319-10226-9_5

Download citation

Publish with us

Policies and ethics