Skip to main content

The Gauge Principle in Covariant Hamiltonian Field Theory

  • Chapter
  • First Online:
Nuclear Physics: Present and Future

Part of the book series: FIAS Interdisciplinary Science Series ((FIAS))

  • 1898 Accesses

Abstract

In this contribution, a canonical transformation theory is presented that is worked out on the basis of the covariant Hamiltonian field theory in local coordinate description. To provide an unique covariant Hamilton approach in the realm of gauge theory, a method is shown, that makes it possible to render every globally gauge invariant Hamiltonian density into a locally gauge invariant Hamiltonian, and subsequently into a Lagrangian density. On the basis of the example of the globally gauge invariant Dirac Lagrangian density, the corresponding locally gauge invariant system is derived by means of the canonical transformation approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Th De Donder, Théorie Invariantive Du Calcul des Variations (Gaulthier-Villars and Cie, Paris, 1930)

    MATH  Google Scholar 

  2. M. Forger, C. Paufler, H. Römer, The poisson bracket for poisson forms in multisymplectic field theory. Rev. Math. Phys. 15, 705 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  3. M.J. Gotay, J. Isenberg, J.E. Marsden, R. Montgomery, Momentum maps and classical fields, part I, covariant field theory (2004), arXiv:physics/9801019

  4. W. Greiner, B. Müller, J. Rafelski, Quantum Electrodynamics of Strong Fields (Springer, New York, 1985)

    Book  Google Scholar 

  5. D. Griffiths, Introduction to Elementary Particles (Wiley, New York, 1987)

    Book  Google Scholar 

  6. Ch. Günther, The polysymplectic Hamiltonian formalism in field theory and calculus of variations I: the local case. J. Differ. Geom. 25, 23 (1987)

    MATH  Google Scholar 

  7. I.V. Kanatchikov, Canonical structure of classical field theory in the polymomentum phase space. Rep. Math. Phys. 41, 49 (1998)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  8. W. Pauli, Rev. Mod. Phys. 13, 203–232 (1941)

    Article  ADS  Google Scholar 

  9. L.H. Ryder, Quantum Field Theory (Cambridge University Press, Cambridge, 2006)

    Google Scholar 

  10. J. Saletan, E.J.V. José, Classical Dynamics (Cambridge University Press, Cambridge, 1998)

    MATH  Google Scholar 

  11. G. Sardanashvily, Generalized Hamiltonian Formalism for Field Theory (World Scientific Publishing Co., Singapore, 1995)

    Book  Google Scholar 

  12. D.J. Saunders, The Geometry of Jet Bundles (Cambridge University Press, Cambrigde, 1989)

    Book  MATH  Google Scholar 

  13. S. Weinberg, The Quantum Theory of Fields, vol. I (Cambridge University Press, Cambridge, 1996)

    Book  Google Scholar 

  14. H. Weyl, Eine neue Erweiterung der Relativitätstheorie. Ann. d. Physik 364, 101–131 (1919)

    Article  ADS  Google Scholar 

  15. H. Weyl, Geodesic fields in the calculus of variation for multiple integrals. Ann. Math. 36, 607 (1935)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hermine Reichau .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Reichau, H., Struckmeier, J. (2015). The Gauge Principle in Covariant Hamiltonian Field Theory. In: Greiner, W. (eds) Nuclear Physics: Present and Future. FIAS Interdisciplinary Science Series. Springer, Cham. https://doi.org/10.1007/978-3-319-10199-6_26

Download citation

Publish with us

Policies and ethics