Skip to main content

Parallelization of Kinetic Theory Simulations

  • Chapter
  • First Online:
Book cover Nuclear Physics: Present and Future

Abstract

Numerical studies of shock waves in large scale systems via kinetic simulations with millions of particles are too computationally demanding to be processed in serial. In this work we focus on optimizing the parallel performance of a kinetic Monte Carlo code for astrophysical simulations such as core-collapse supernovae. Our goal is to attain a flexible program that scales well with the architecture of modern supercomputers. This approach requires a hybrid model of programming that combines a message passing interface (MPI) with a multithreading model (OpenMP) in C++. We report on our approach to implement the hybrid design into the kinetic code and show first results which demonstrate a significant gain in performance when many processors are applied.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. W. Scheid, H. Müller, W. Greiner, Phys. Rev. Lett. 32, 741 (1974)

    Article  ADS  Google Scholar 

  2. H. Stöcker, J.A. Maruhn, W. Greiner, Phys. Rev. Lett. 44, 725 (1980)

    Article  ADS  Google Scholar 

  3. I. Bouras et al., Phys. Rev. Lett. 103, 032301 (2009); I. Bouras et al., Phys. Rev. C 82, 024910 (2010); I. Bouras et al., Phys. Lett. B 710, 641 (2012)

    Google Scholar 

  4. M. Luzum, P. Romatschke, Phys. Rev. C 78, 034915 (2008)

    Article  ADS  Google Scholar 

  5. H. Song, U.W. Heinz, J. Phys. G 36, 064033 (2009)

    Article  ADS  Google Scholar 

  6. B. Schenke, S. Jeon, C. Gale, Phys. Lett. B 702, 59 (2011)

    Article  ADS  Google Scholar 

  7. J. Novak et al., Phys. Rev. C 89, 034917 (2014)

    Article  ADS  Google Scholar 

  8. C.-Y. Wong, Phys. Rev. C 25, 1460 (1982)

    Article  ADS  Google Scholar 

  9. G.F. Bertsch et al., Phys. Rev. C 29, 673 (1984)

    Article  ADS  Google Scholar 

  10. H. Kruse et al., Phys. Rev. Lett. 54, 289 (1985)

    Article  ADS  Google Scholar 

  11. W. Bauer, G.F. Bertsch, W. Cassing, U. Mosel, Phys. Rev. C 34, 2127 (1986)

    Article  ADS  Google Scholar 

  12. H. Stöcker, W. Greiner, Phys. Rep. 137, 277 (1986)

    Article  ADS  Google Scholar 

  13. G.F. Bertsch, S. Das, Gupta. Phys. Rep. 160, 189 (1988)

    Article  ADS  Google Scholar 

  14. P. Schuck et al., Prog. Part. Nuc. Phys. 22, 181 (1989)

    Article  ADS  Google Scholar 

  15. W.G. Gong, W. Bauer, C.K. Gelbke, S. Pratt, Phys. Rev. C 43, 781 (1991)

    Article  ADS  Google Scholar 

  16. S.J. Wang, B.-A. Li, W. Bauer, J. Randrup, Ann. Phys. 209, 251 (1991)

    Article  ADS  Google Scholar 

  17. B.-A. Li, C.M. Ko, W. Bauer, Int. J. Mod. Phys. E 7, 147 (1998)

    Article  ADS  Google Scholar 

  18. Z.W. Lin et al., Phys. Rev. C C 72, 064901 (2005)

    Article  ADS  Google Scholar 

  19. B.-A. Li, L.W. Chen, C.M. Ko, Phys. Rep. 464, 113 (2008)

    Article  ADS  Google Scholar 

  20. L. Wilets, E.M. Henley, M. Kraft, A.D. MacKellar, Nucl. Phys. A2(82), 341 (1977)

    Article  ADS  Google Scholar 

  21. A.R. Bodmer, C.N. Panos, Phys. Rev. C 15, 1342 (1977)

    Article  ADS  Google Scholar 

  22. J. Aichelin, A. Rosenhauer, G. Peilert, H. Stöcker, W. Greiner, Phys. Rev. Lett. 58, 1926 (1987)

    Article  ADS  Google Scholar 

  23. H. Feldmeier, Nucl. Phys. A 515, 147 (1990)

    Article  ADS  Google Scholar 

  24. J. Aichelin, Phys. Rep. 202, 233 (1991)

    Article  ADS  Google Scholar 

  25. H. Feldmeier, J. Schnack, Rev. Mod. Phys. 72, 655 (2000)

    Article  ADS  Google Scholar 

  26. I. Sagert, D. Colbry, T. Strother, R. Pickett, W. Bauer, JPCS 458, 012031 (2013). arXiv:1210.8084

    Google Scholar 

  27. I. Sagert, W. Bauer, D. Colbry, R. Pickett, T. Strother, J. Phys.: Conf. Ser. 458, 012031 (2013)

    ADS  Google Scholar 

  28. J.R. Wilson, Numerical Astrophysics (Jones and Bartlett, Boston, 1985)

    Google Scholar 

  29. M. Herant, W. Benz, W.R. Hix, C.L. Fryer, S.A. Colgate, Astrophys. J. 435, 339 (1994)

    Article  ADS  Google Scholar 

  30. C.L. Fryer, A. Heger, Astrophys. J. 541, 1033 (2000)

    Article  ADS  Google Scholar 

  31. A. Mezzacappa, M. Liebendörfer, O.E.B. Messer, W.R. Hix, F.-K. Thielemann, S.W. Bruenn, Phys. Rev. Lett. 86, 1935 (2001)

    Article  ADS  Google Scholar 

  32. C.L. Fryer, M.S. Warren, Astrophys. J. 574, L65 (2002)

    Article  ADS  Google Scholar 

  33. T.A. Thompson, A. Burrows, P.A. Pinto, Astrophys. J. 592, 434 (2003)

    Article  ADS  Google Scholar 

  34. A. Heger et al., Astrophys. J. 591, 288 (2003)

    Article  ADS  Google Scholar 

  35. R. Buras, M. Rampp, H-Th Janka, K. Kifonidis, Phys. Rev. Lett. 90, 241101 (2003)

    Article  ADS  Google Scholar 

  36. W. Bauer, Acta Phys. Hung. A 21, 371 (2004)

    Article  Google Scholar 

  37. T. Bollenbach, MSU, M.S. Thesis (2002)

    Google Scholar 

  38. T. Strother, W. Bauer, Int. J. Mod. Phys. E 16(4), 1073 (2007)

    Article  ADS  Google Scholar 

  39. T. Strother, W. Bauer, Prog. Part. Nucl. Phys. 62, 468 (2009)

    Google Scholar 

  40. T. Strother, MSU, Ph.D. Thesis (2009)

    Google Scholar 

  41. T. Strother, W. Bauer. J. Phys.: Conf. Ser. 230, 012027 (2010)

    ADS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Blue Water Undergraduate Petascale Education Program and Shodor for their financial and educational support. Furthermore, this work used the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation grant number OCI-1053575. I.S. is thankful to the Alexander von Humboldt foundation and acknowledges the support of the High Performance Computer Center and the Institute for Cyber-Enabled Research at Michigan State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jim Howell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Howell, J. et al. (2015). Parallelization of Kinetic Theory Simulations. In: Greiner, W. (eds) Nuclear Physics: Present and Future. FIAS Interdisciplinary Science Series. Springer, Cham. https://doi.org/10.1007/978-3-319-10199-6_18

Download citation

Publish with us

Policies and ethics