Skip to main content

Homotopical Categories of Logics

  • Chapter
  • 1050 Accesses

Part of the book series: Studies in Universal Logic ((SUL))

Abstract

Categories of logics and translations usually come with a natural notion of when a translation is an equivalence. The datum of a category with a distinguished class of weak equivalences places one into the realm of abstract homotopy theory where notions like homotopy (co)limits and derived functors become available. We analyze some of these notions for categories of logics. We show that, while logics and flexible translations form a badly behaved category with only few (co)limits, they form a well behaved homotopical category which has all homotopy (co)limits. We then outline several natural questions and directions for further research suggested by a homotopy theoretical viewpoint on categories of logics.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    See Example 2.8 for a colimit of flexible morphisms which does exist, but does not behave right.

  2. 2.

    Cubical sets are more common than simplicial sets in directed algebraic topology, but it is also easy to write down a cocubical object in \(\mathcal {G}\hspace {-.4pt}\mathit {enLog}\) to produce a cubical variant of Inf (L).

References

  1. Arndt, P.: Homotopical fibring. To appear

    Google Scholar 

  2. Arndt, P., de Alvarenga Freire, R., Luciano, O., Mariano, H.: A global glance on categories in logic. Log. Univers. 1(1), 3–39 (2007). doi:10.1007/s11787-006-0002-7. ISSN 1661-8297

    Article  MathSciNet  MATH  Google Scholar 

  3. Barwick, C.: On left and right model categories and left and right Bousfield localizations. Homol. Homotopy Appl. 12(2), 245–320 (2010). http://projecteuclid.org/getRecord?id=euclid.hha/1296223884. ISSN 1532-0073

    Article  MathSciNet  MATH  Google Scholar 

  4. Barwick, C., Kan, D.: A characterization of simplicial localization functors and a discussion of DK equivalences. Indag. Math. 23(1–2), 69–79 (2012). doi:10.1016/j.indag.2011.10.001. ISSN 0019-3577

    Article  MathSciNet  MATH  Google Scholar 

  5. Barwick, C., Kan, D.: Relative categories: another model for the homotopy theory of homotopy theories. Indag. Math. 23(1–2), 42–68 (2012). doi:10.1016/j.indag.2011.10.002. ISSN 0019-3577

    Article  MathSciNet  MATH  Google Scholar 

  6. Bašić, M., Nikolaus, T.: Dendroidal sets as models for connective spectra. Preprint. arXiv:1203.6891

  7. Bergner, J.E.: A survey of (∞,1)-categories. In: Towards Higher Categories. IMA Vol. Math. Appl., vol. 152, pp. 69–83. Springer, New York (2010). doi:10.1007/978-1-4419-1524-5_2

    Chapter  Google Scholar 

  8. Blok, W., Pigozzi, D.: Algebraizable Logics. Mem. Am. Math. Soc., vol. 77(396) (1989). doi:10.1090/memo/0396. vi+78pp. ISSN 0065-9266.

    Google Scholar 

  9. Bloom, S., Brown, D., Suszko, R.: Some theorems on abstract logics. Algebra Log. 9, 274–280 (1970). ISSN 0373-9252

    Article  MathSciNet  MATH  Google Scholar 

  10. Caleiro, C., Gonçalves, R.: Equipollent logical systems. In: Béziau, J.-Y. (ed.) Logica Universalis: Towards a General Theory of Logic. Birkhäuser, Basel (2007)

    Google Scholar 

  11. Caleiro, C., Mateus, P., Ramos, J., Sernadas, A.: Combining logics: parchments revisited. In: Recent Trends in Algebraic Development Techniques. Lecture Notes in Computer Science, vol. 2267, pp. 48–70 (2002)

    Chapter  Google Scholar 

  12. Cisinski, D., Moerdijk, I.: Dendroidal sets and simplicial operads. J. Topol. 6(3), 705–756 (2013). doi:10.1112/jtopol/jtt006. ISSN 1753-8416; 1753-8424/e

    Article  MathSciNet  MATH  Google Scholar 

  13. Coniglio, M.: Recovering a logic from its fragments by meta-fibring. Log. Univers. 1(2), 377–416 (2007). doi:10.1007/s11787-007-0019-6. ISSN 1661-8297

    Article  MathSciNet  MATH  Google Scholar 

  14. Czelakowski, J.: Protoalgebraic Logics. Trends in Logic—Studia Logica Library, vol. 10. Kluwer Academic, Dordrecht (2001). xii+452pp. ISBN 0-7923-6940-8

    MATH  Google Scholar 

  15. Diaconescu, R.: Institution-Independent Model Theory. Studies in Universal Logic. Birkhäuser, Basel (2008). xii+376pp. ISBN 978-3-7643-8707-5

    MATH  Google Scholar 

  16. Dwyer, W., Hirschhorn, P., Kan, D., Smith, J.: Homotopy Limit Functors on Model Categories and Homotopical Categories. American Mathematical Society (AMS), Providence (2004). vii+181pp. ISBN 0-8218-3703-6

    MATH  Google Scholar 

  17. Dwyer, W., Kan, D.: Calculating simplicial localizations. J. Pure Appl. Algebra 18(1), 17–35 (1980). doi:10.1016/0022-4049(80)90113-9. ISSN 0022-4049

    Article  MathSciNet  MATH  Google Scholar 

  18. Dwyer, W., Kan, D.: Function complexes in homotopical algebra. Topology 19(4), 427–440 (1980). doi:10.1016/0040-9383(80)90025-7. ISSN 0040-9383

    Article  MathSciNet  MATH  Google Scholar 

  19. Dwyer, W., Spaliński, J.: Homotopy theories and model categories. In: Handbook of Algebraic Topology, pp. 73–126. North-Holland, Amsterdam (1995)

    Chapter  Google Scholar 

  20. Fernández, V., Coniglio, M.: Fibring in the Leibniz hierarchy. Log. J. IGPL 15(5–6), 475–501 (2007). doi:10.1093/jigpal/jzm036. ISSN 1367-0751

    Article  MathSciNet  MATH  Google Scholar 

  21. Fiadeiro, J., Sernadas, A.: Structuring theories on consequence. In: Sannella, D., Tarlecki, A. (eds.) Recent Trends in Data Type Specification. Lecture Notes in Computer Science, vol. 332, pp. 44–72. Springer, Berlin (1988). doi:10.1007/3-540-50325-0_3. ISBN 978-3-540-50325-5

    Chapter  Google Scholar 

  22. Goerss, P., Jardine, J.F.: Simplicial Homotopy Theory. Birkhäuser, Basel (2009)

    Book  Google Scholar 

  23. Gomi, K.: Theory of completeness for logical spaces. Log. Univers. 3(2), 243–291 (2009). doi:10.1007/s11787-009-0008-z. ISSN 1661-8297

    Article  MathSciNet  MATH  Google Scholar 

  24. Grandis, M.: Directed algebraic topology, categories and higher categories. Appl. Categ. Struct. 15(4), 341–353 (2007). doi:10.1007/s10485-007-9084-5. ISSN 0927-2852

    Article  MathSciNet  MATH  Google Scholar 

  25. Groth, M.: A short course on infinity-categories. Preprint. arXiv:1007.2925

  26. Groth, M.: Derivators, pointed derivators and stable derivators. Algebr. Geom. Topol. 13(1), 313–374 (2013). doi:10.2140/agt.2013.13.313. ISSN 1472-2747; 1472-2739/e

    Article  MathSciNet  MATH  Google Scholar 

  27. Haeusler, E., Martini, A., Wolter, U.: Towards a uniform presentation of logical systems by indexed categories and adjoint situations. J. Log. Comput. (2012). doi:10.1093/logcom/exs038

    Google Scholar 

  28. Heuts, G.: Algebras over infinity-operads. Preprint. arXiv:1110.1776

  29. Hovey, M.: Model Categories. Mathematical Surveys and Monographs, vol. 63. American Mathematical Society, Providence (1999). xii+209pp. ISBN 0-8218-1359-5

    MATH  Google Scholar 

  30. Jacobs, B.: Categorical Logic and Type Theory. Studies in Logic and the Foundations of Mathematics, vol. 141. North-Holland, Amsterdam (1999). xviii+760pp. ISBN 0-444-50170-3

    MATH  Google Scholar 

  31. Jánossy, A., Kurucz, A., Eiben, A.: Combining algebraizable logics. Notre Dame J. Form. Log. 37(2), 366–380 (1996). doi:10.1305/ndjfl/1040046092. Combining logics. ISSN 0029-4527

    Article  MATH  Google Scholar 

  32. Joyal, A.: Notes on quasi-categories. Preprint. http://www.math.uchicago.edu/~may/IMA/Joyal.pdf

  33. Kashiwara, M., Schapira, P.: Categories and Sheaves. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 332. Springer, Berlin (2006). x+497pp. ISBN 978-3-540-27949-5

    MATH  Google Scholar 

  34. Kelly, G.: Basic Concepts of Enriched Category Theory. Theory Appl. Categ., vol. 10 (2005). vi+137pp. Reprint of the 1982 original [Cambridge Univ. Press, Cambridge; MR0651714]

    Google Scholar 

  35. Lack, S.: Homotopy-theoretic aspects of 2-monads. J. Homotopy and Relat. Struct. (2007)

    Google Scholar 

  36. Lambek, J.: Deductive systems and categories II. Standard constructions and closed categories. In: Category Theory, Homology Theory and Their Applications I. Lecture Notes in Mathematics, vol. 86, pp. 76–122. Springer, Berlin (1969). doi:10.1007/BFb0079385. ISBN 978-3-540-04605-9

    Chapter  Google Scholar 

  37. Lewitzka, S.: A topological approach to universal logic: model-theoretical abstract logics. In: Logica Universalis, pp. 35–63. Birkhäuser, Basel (2005). doi:10.1007/3-7643-7304-0_3

    Chapter  Google Scholar 

  38. Łoś, J., Suszko, R.: Remarks on sentential logics. Proc. K. Ned. Akad. Wet., Ser. A, Indag. Math. 20, 177–183 (1958)

    Google Scholar 

  39. Lurie, J.: Higher algebra. Preprint. http://www.math.harvard.edu/~lurie/papers/higheralgebra.pdf

  40. Lurie, J.: Higher Topos Theory. Annals of Mathematics Studies, vol. 170. Princeton University Press, Princeton (2009). xviii+925pp. ISBN 978-0-691-14049-0

    MATH  Google Scholar 

  41. Mariano, H., Mendes, C.: Towards a good notion of categories of logics book of abstracts for: topology, algebra and categories in logic, Marseille (2011)

    Google Scholar 

  42. Mariano, H., Mendes, C.: Towards a good notion of categories of logics. Preprint. arXiv:1404.3780

  43. Mariano, H., Pinto, D.: Representation theory of logics: a categorial approach. Preprint. arXiv:1405.2429

  44. Moerdijk, I., Weiss, I.: On inner Kan complexes in the category of dendroidal sets. Adv. Math. 221(2), 343–389 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  45. Nikolaus, T.: Algebraic k-theory of infinity-operads. Preprint. arXiv:1303.2198

  46. Radulescu-Banu, A.: Cofibrations in homotopy theory. arXiv preprint (2009). arXiv:math/0610009

  47. Sernadas, A., Sernadas, C., Caleiro, C.C.: Fibring of logics as a categorial construction. J. Log. Comput. (1999)

    Google Scholar 

  48. Shulman, M.: Homotopy limits and colimits and enriched homotopy theory. Preprint

    Google Scholar 

  49. Szumiło, K.: Available at http://www.math.uni-bonn.de/people/szumilo/papers/cht.pdf

  50. Trova, F.: On the geometric realization of dendroidal sets. Master’s thesis, ALGANT, Leiden/Padova (2009)

    Google Scholar 

  51. Weiss, I.: Broad posets, trees and the dendroidally ordered category. Preprint. arXiv:1201.3987

  52. Wójcicki, R.: Logical matrices strongly adequate for structural sentential calculi. Bull. Acad. Pol. Sci., Sér. Sci. Math. Astron. Phys. 17, 333–335 (1969). ISSN 0001-4117

    MATH  Google Scholar 

  53. Wójcicki, R.: Basic theory of consequence operations. In: Theory of Logical Calculi. Synthese Library, vol. 199. Kluwer Academic, Dordrecht (1988). xviii+473pp. ISBN 90-277-2785-6

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Arndt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Arndt, P. (2015). Homotopical Categories of Logics. In: Koslow, A., Buchsbaum, A. (eds) The Road to Universal Logic. Studies in Universal Logic. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-10193-4_2

Download citation

Publish with us

Policies and ethics