An Integrative Approach to Presence and Self-Motion Perception Research

  • Bernhard E. RieckeEmail author
  • Jörg Schulte-Pelkum


This chapter is concerned with the perception and simulation of self-motion in virtual environments, and how spatial presence and other higher cognitive and top-down factors can contribute to improve the illusion of self-motion (“vection”) in virtual reality (VR). In the real world, we are used to being able to move around freely and interact with our environment in a natural and effortless manner. Current VR technology does, however, hardly allow for natural, life-like interaction between the user and the virtual environment. One crucial shortcoming is the insufficient and often unconvincing simulation of self-motion, which frequently causes disorientation, unease, and motion sickness. The specific focus of this chapter is the investigation of potential relations between higher-level factors like presence on the one hand and self-motion perception in VR on the other hand. Even though both presence and self-motion illusions have been extensively studied in the past, the question whether/how they might be linked to one another has received relatively little attention by researchers so far. After reviewing relevant literature on vection and presence, we present data from two experiments, which explicitly investigated potential relations between vection and presence and indicate that there might indeed be a direct link between these two phenomena. We discuss theoretical and practical implications from these findings and conclude by sketching a tentative theoretical framework that discusses how a broadened view that incorporates both presence and vection research might lead to a better understanding of both phenomena, and might ultimately be employed to improve not only the perceptual effectiveness of a given VR simulation, but also its behavioural and goal/application-specific effectiveness.


Behavioural effectiveness Cognitive factors Experimentation Framework Higher-level factors Human factors Human-computer interfaces Immersion Perception-action loop Perceptual effectiveness Perceptually-Oriented Ego-Motion Simulation Presence Self-motion illusion Self-Motion Simulation Spatial Presence Vection Virtual environments Virtual reality 



This work was funded by Simon Fraser University, the European Community (IST-2001-39223, FET Proactive Initiative, project “POEMS”) and the Max Planck Society.


  1. Andersen, G. J. (1986). Perception of self-motion – Psychophysical and computational approaches. Psychological Bulletin, 99(1), 52–65.Google Scholar
  2. Andersen, G. J., & Braunstein, M. L. (1985). Induced self-motion in central vision. Journal of Experimental Psychology: Human Perception and Performance, 11(2), 122–132.Google Scholar
  3. Ash, A., Palmisano, S., Govan, D. G., & Kim, J. (2011a). Display lag and gain effects on vection experienced by active observers. Aviation, Space and Environmental Medicine, 82(8), 763–769. doi: 10.3357/ASEM.3026.2011.Google Scholar
  4. Ash, A., Palmisano, S., & Kim, J. (2011b). Vection in depth during consistent and inconsistent multisensory stimulation. Perception, 40(2), 155–174. doi: 10.1068/p6837.Google Scholar
  5. Ash, A., Palmisano, S., & Allison, R. (2012). Vection in depth during treadmill locomotion. Journal of Vision, 12(9), 181. doi: 10.1167/12.9.181.Google Scholar
  6. Ash, A., Palmisano, S., Apthorp, D., & Allison, R. S. (2013). Vection in depth during treadmill walking. Perception, 42(5), 562–576. doi: 10.1068/p7449.Google Scholar
  7. Avraamides, M. N., & Kelly, J. W. (2008). Multiple systems of spatial memory and action. Cognitive Processing, 9, 93–106. doi: 10.1007/s10339-007-0188-5.Google Scholar
  8. Avraamides, M. N., Klatzky, R. L., Loomis, J. M., & Golledge, R. G. (2004). Use of cognitive versus perceptual heading during imagined locomotion depends on the response mode. Psychological Science, 15(6), 403–408. doi: 10.1111/j.0956-7976.2004.00692.x.Google Scholar
  9. Bailenson, J. N., Guadagno, R. E., Aharoni, E., Dimov, A., Beall, A. C., & Blascovich, J. (2004). Comparing behavioral and self-report measures of embodied agents: Social presence in immersive virtual environments. Paper presented at. Proceedings of the 7th annual international workshop on PRESENCE. Barcelona, Spain.Google Scholar
  10. Bakker, N. H., Werkhoven, P. J., & Passenier, P. O. (1999). The effects of proprioceptive and visual feedback on geographical orientation in virtual environments. Presence: Teleoperators and Virtual Environments, 8(1), 36–53.Google Scholar
  11. Bakker, N. H., Werkhoven, P. J., & Passenier, P. O. (2001). Calibrating visual path integration in VEs. Presence: Teleoperators and Virtual Environments, 10(2), 216–224.Google Scholar
  12. Becker, W., Nasios, G., Raab, S., & Jürgens, R. (2002). Fusion of vestibular and podokinesthetic information during self-turning towards instructed targets. Experimental Brain Research, 144(4), 458–474.Google Scholar
  13. Berger, D. R., Schulte-Pelkum, J., & Bülthoff, H. H. (2010). Simulating believable forward accelerations on a stewart motion platform. ACM Transactions on Applied Perception, 7(1), 1–27. doi: 10.1145/1658349.1658354.Google Scholar
  14. Berthoz, A., & Droulez, J. (1982). Linear self motion perception. In A. H. Wertheim, W. A. Wagenaar, & H. W. Leibowitz (Eds.), Tutorials on motion perception (pp. 157–199). New York: Plenum.Google Scholar
  15. Berthoz, A., Pavard, B., & Young, L. R. (1975). Perception of linear horizontal self-motion induced by peripheral vision (linearvection) – basic characteristics and visual-vestibular interactions. Experimental Brain Research, 23(5), 471–489.Google Scholar
  16. Biocca, F. (1997). The cyborg’s dilemma: Progressive embodiment in virtual environments. Journal of Computer-Mediated Communication, 3(2).Google Scholar
  17. Bles, W. (1981). Stepping around: Circular vection and Coriolis effects. In J. Long & A. Baddeley (Eds.), Attention and performance IX (pp. 47–61). Hillsdale: Erlbaum.Google Scholar
  18. Bles, W., & Kapteyn, T. S. (1977). Circular vection and human posture: 1. Does proprioceptive system play a role? Agressologie, 18(6), 325–328.Google Scholar
  19. Bles, W., Bos, J. E., de Graaf, B., Groen, E., & Wertheim, A. H. (1998). Motion sickness: Only one provocative conflict? Brain Research Bulletin, 47(5), 481–487.Google Scholar
  20. Boer, E. R., Girshik, A. R., Yamamura, T., & Kuge, N. (2000). Experiencing the same road twice: A driver-centred comparison between simulation and reality. Proceedings of the Driving Simulation conference 2000, Paris.Google Scholar
  21. Bouchard, S., Dumoulin, S., Talbot, J., Ledoux, A.-A., Phillips, J., Monthuy-Blanc, J., Labonté-Chartrand, G., et al. (2012). Manipulating subjective realism and its impact on presence: Preliminary results on feasibility and neuroanatomical correlates. Interacting with Computers, 24(4), 227–236. doi: 10.1016/j.intcom.2012.04.011.Google Scholar
  22. Brandt, T., Dichgans, J., & Koenig, E. (1973). Differential effects of central versus peripheral vision on egocentric and exocentric motion perception. Experimental Brain Research, 16, 476–491.Google Scholar
  23. Burki-Cohen, J., Go, T. H., Chung, W. Y., Schroeder, J., Jacobs, S., & Longridge, T. (2003, April 14–17). Simulator fidelity requirements for airline pilot training and evaluation continued: An update on motion requirements research. Proceedings of the 12th international symposium on Aviation Psychology (pp. 182–189). Dayton.Google Scholar
  24. Chance, S. S., Gaunet, F., Beall, A. C., & Loomis, J. M. (1998). Locomotion mode affects the updating of objects encountered during travel: The contribution of vestibular and proprioceptive inputs to path integration. Presence: Teleoperators and Virtual Environments, 7(2), 168–178.Google Scholar
  25. Cheung, B. S. K., Howard, I. P., Nedzelski, J. M., & Landolt, J. P. (1989). Circularvection about earth-horizontal axes in bilateral labyrinthine-defective subjects. Acta Oto-Laryngologica, 108(5), 336. doi: 10.3109/00016488909125537.Google Scholar
  26. Conrad, B., Schmidt, S., & Douvillier, J. (1973). Washout circuit design for multi-degrees-of-freedom moving base simulators. Visual and Motion Simulation Conference. AIAA paper 1973–929.Google Scholar
  27. Creem-Regehr, S. H., Willemsen, P., Gooch, A. A., & Thompson, W. B. (2005). The influence of restricted viewing conditions on egocentric distance perception: Implications for real and virtual indoor environments. Perception, 34(2), 191–204. doi: 10.1068/p5144.Google Scholar
  28. Dichgans, J., & Brandt, T. (1978). Visual-vestibular interaction: Effects on self-motion perception and postural control. In R. Held, H. W. Leibowitz, & H.-L. Teuber (Eds.), Perception, handbook of sensory physiology (Vol. VIII, pp. 756–804). Berlin/Heidelberg: Springer.Google Scholar
  29. Diener, H. C., Wist, E. R., Dichgans, J., & Brandt, T. (1976). The spatial frequency effect on perceived velocity. Vision Research, 16(2), 169–176. doi: 10.1016/0042-6989(76)90094-8. IN4–IN7.Google Scholar
  30. Distler, H. K. (2003). Wahrnehmung in Virtuellen Welten (PhD thesis). Giessen: Justus-Liebig-Universität.Google Scholar
  31. Dodge, R. (1923). Thresholds of rotation. Journal of Experimental Psychology, 6(2), 107–137. doi: 10.1037/h0076105.Google Scholar
  32. Ernst, M. O., & Bülthoff, H. H. (2004). Merging the senses into a robust percept. Trends in Cognitive Sciences, 8(4), 162–169.Google Scholar
  33. Feuereissen, D. (2013, August). Self-motion illusions (vection) in virtual environments: Do active control and user-generated motion cueing enhance visually induced vection? (MSc thesis). Surrey: Simon Fraser University. Retrieved from
  34. Freeman, J., Avons, S. E., Meddis, R., Pearson, D. E., & IJsselsteijn, W. I. (2000). Using behavioral realism to estimate presence: A study of the utility of postural responses to motion stimuli. Presence: Teleoperators and Virtual Environments, 9(2), 149–164.Google Scholar
  35. Giannopulu, I., & Lepecq, J. C. (1998). Linear-vection chronometry along spinal and sagittal axes in erect man. Perception, 27(3), 363–372.Google Scholar
  36. Grant, P. R., & Reid, L. D. (1997). Motion washout filter tuning: Rules and requirements. Journal of Aircraft, 34(2), 145–151. doi: 10.2514/2.2158.Google Scholar
  37. Grechkin, T. Y., Nguyen, T. D., Plumert, J. M., Cremer, J. F., & Kearney, J. K. (2010). How does presentation method and measurement protocol affect distance estimation in real and virtual environments? ACM Transactions on Applied Perception, 7(4), 26:1–26:18. doi: 10.1145/1823738.1823744
  38. Guedry, F. E., Rupert, A. R., & Reschke, M. F. (1998). Motion sickness and development of synergy within the spatial orientation system. A hypothetical unifying concept. Brain Research Bulletin, 47(5), 475–480.Google Scholar
  39. Haans, A., & IJsselsteijn, W. A. (2012). Embodiment and telepresence: Toward a comprehensive theoretical framework. Interacting with Computers, 24(4), 211–218. doi: 10.1016/j.intcom.2012.04.010.Google Scholar
  40. Hale, K. S., & Stanney, K. M. (2014). Handbook of virtual environments: Design, implementation, and applications (2nd ed.). Boca Raton: CRC Press.Google Scholar
  41. Hartmann, T., Wirth, W., Vorderer, P., Klimmt, C., Schramm, H., & Böking, S. (2014). Spatial presence theory: State of the art and challenges ahead. In F. Biocca, J. Freeman, W. IJsselsteijn, M. Lombard, & R. J. Schaevitz (Eds.), Immersed in media: Telepresence theory, measurement and technology. New York: Springer.Google Scholar
  42. Hennebert, P. E. (1960). Audiokinetic Nystagmus. Journal of Auditory Research, 1(1), 84–87.Google Scholar
  43. Hettinger, L. J., Schmidt, T., Jones, D. L., & Keshavarz, B. (2014). Illusory self-motion in virtual environments. In K. S. Hale & K. M. Stanney (Eds.), Handbook of virtual environments, human factors and ergonomics (pp. 435–466). Boca Raton: CRC Press.Google Scholar
  44. Hoffman, H. G., Richards, T., Coda, B., Richards, A., & Sharar, S. R. (2003). The illusion of presence in immersive virtual reality during an fMRI brain scan. CyberPsychology & Behavior, 6(2), 127–131. doi: 10.1089/109493103321640310.Google Scholar
  45. Howard, I. P. (1982). Human visual orientation. Chichester/New York: Wiley.Google Scholar
  46. Howard, I. P. (1986). The perception of posture, self motion, and the visual vertical. In K. R. Boff, L. Kaufman, & J. P. Thomas (Eds.), Sensory processes and perception (Handbook of human perception and performance, Vol. 1, pp. 18.1–18.62). New York: Wiley.Google Scholar
  47. Howard, I. P., & Heckmann, T. (1989). Circular vection as a function of the relative sizes, distances, and positions of two competing visual displays. Perception, 18(5), 657–665. doi: 10.1068/p180657.Google Scholar
  48. Howard, I. P., & Howard, A. (1994). Vection – The contributions of absolute and relative visual motion. Perception, 23(7), 745–751.Google Scholar
  49. IJsselsteijn, W. A. (2004). Presence in depth. Netherlands: Technische Universiteit Eindhoven, Eindhoven.Google Scholar
  50. IJsselsteijn, W., de Ridder, H., Freeman, J., Avons, S. E., & Bouwhuis, D. (2001). Effects of stereoscopic presentation, image motion, and screen size on subjective and objective corroborative measures of presence. Presence: Teleoperators and Virtual Environments, 10(3), 298–311.Google Scholar
  51. Ito, H., & Shibata, I. (2005). Self-motion perception from expanding and contracting optical flows overlapped with binocular disparity. Vision Research, 45(4), 397–402. doi: 10.1016/j.visres.2004.11.009.Google Scholar
  52. Jennett, C., Cox, A. L., Cairns, P., Dhoparee, S., Epps, A., Tijs, T., & Walton, A. (2008). Measuring and defining the experience of immersion in games. International Journal of Human-Computer Studies, 66(9), 641–661. doi: 10.1016/j.ijhcs.2008.04.004.Google Scholar
  53. Johansson, G. (1977). Studies on visual-perception of locomotion. Perception, 6(4), 365–376. doi: 10.1068/p060365.Google Scholar
  54. Johnson, W. H., Sunahara, F. A., & Landolt, J. P. (1999). Importance of the vestibular system in visually induced nausea and self-vection. Journal of Vestibular Research: Equilibrium & Orientation, 9(2), 83–87.Google Scholar
  55. Kano, C. (1991). The perception of self-motion induced by peripheral visual information in sitting and supine postures. Ecological Psychology, 3(3), 241–252. doi: 10.1207/s15326969eco0303_3.MathSciNetGoogle Scholar
  56. Kearns, M. J., Warren, W. H., Duchon, A. P., & Tarr, M. J. (2002). Path integration from optic flow and body senses in a homing task. Perception, 31(3), 349–374.Google Scholar
  57. Kemeny, A., & Panerai, F. (2003). Evaluating perception in driving simulation experiments. Trends in Cognitive Sciences, 7(1), 31–37.Google Scholar
  58. Kennedy, R. S., Drexler, J., & Kennedy, R. C. (2010). Research in visually induced motion sickness. Applied Ergonomics, 41(4), 494–503. doi: 10.1016/j.apergo.2009.11.006.Google Scholar
  59. Keshavarz, B., Hettinger, L. J., Vena, D., & Campos, J. L. (2013). Combined effects of auditory and visual cues on the perception of vection. Experimental Brain Research. doi: 10.1007/s00221-013-3793-9.zbMATHGoogle Scholar
  60. Kitazaki, M., & Sato, T. (2003). Attentional modulation of self-motion perception. Perception, 32(4), 475–484. doi: 10.1068/p5037.Google Scholar
  61. Kitazaki, M., Onimaru, S., & Sato, T. (2010). Vection and action are incompatible (pp. 22–23). Presented at the 2nd IEEE VR 2010 workshop on Perveptual Illusions in Virtual Environments (PIVE), Waltham.Google Scholar
  62. Klatzky, R. L., Loomis, J. M., Beall, A. C., Chance, S. S., & Golledge, R. G. (1998). Spatial updating of self-position and orientation during real, imagined, and virtual locomotion. Psychological Science, 9(4), 293–298. doi: 10.1111/1467-9280.00058.Google Scholar
  63. Knapp, J. M., & Loomis, J. M. (2004). Limited field of view of head-mounted displays is not the cause of distance underestimation in virtual environments. Presence, 13(5), 572–577.Google Scholar
  64. Lackner, J. R. (1977). Induction of illusory self-rotation and nystagmus by a rotating sound-field. Aviation, Space and Environmental Medicine, 48(2), 129–131.Google Scholar
  65. Larsson, P., Västfjäll, D., & Kleiner, M. (2004). Perception of self-motion and presence in auditory virtual environments. Proceedings of 7th annual workshop of Presence (pp. 252–258). Valencia.Google Scholar
  66. Lawson, B. D., & Riecke, B. E. (2014). The perception of body motion. In K. S. Hale & K. M. Stanney (Eds.), Handbook of virtual environments: Design, implementation, and applications (2nd ed., pp. 163–195). Boca Raton: CRC Press.Google Scholar
  67. Lawson, B. D., Graeber, D. A., Mead, A. M., & Muth, E. R. (2002). Signs and symptoms of human syndromes associated with synthetic experiences. In K. M. Stanney (Ed.), Handbook of virtual environments (pp. 589–618). Mahwah: Lawrence Erlbaum.Google Scholar
  68. Lee, K. M. (2004). Presence, explicated. Communication Theory, 14(1), 27–50. doi: 10.1111/j.1468-2885.2004.tb00302.x.Google Scholar
  69. Lepecq, J. C., Jouen, F., & Dubon, D. (1993). The effect of linear vection on manual aiming at memorized directions of stationary targets. Perception, 22(1), 49–60.Google Scholar
  70. Lepecq, J. C., Giannopulu, I., & Baudonniere, P. M. (1995). Cognitive effects on visually induced body motion in children. Perception, 24(4), 435–449.Google Scholar
  71. Loomis, J. M. (1992). Distal attribution and presence. Presence: Teleoperators and Virtual Environments, 1(1), 113–119.MathSciNetGoogle Scholar
  72. Loomis, J. M., da Silva, J. A., Fujita, N., & Fukusima, S. S. (1992). Visual space perception and visually directed action. Journal of Experimental Psychology: Human Perception and Performance, 18(4), 906–921.Google Scholar
  73. Loomis, J. M., Da Silva, J. A., Philbeck, J. W., & Fukusima, S. S. (1996). Visual perception of location and distance. Current Directions in Psychological Science, 5(3), 72–77.Google Scholar
  74. Lowther, K., & Ware, C. (1996). Vection with large screen 3D imagery. In ACM CHI ’96 (pp. 233–234). New York: ACM.Google Scholar
  75. Mach, E. (1875). Grundlinien der Lehre von der Bewegungsempfindung. Leipzig: Engelmann.Google Scholar
  76. Marme-Karelse, A. M., & Bles, W. (1977). Circular vection and human posture, II. Does the auditory system play a role? Agressologie, 18(6), 329–333.Google Scholar
  77. May, M. (1996). Cognitive and embodied modes of spatial imagery. Psychologische Beiträge, 38(3/4), 418–434.Google Scholar
  78. May, M. (2004). Imaginal perspective switches in remembered environments: Transformation versus interference accounts. Cognitive Psychology, 48(2), 163–206.Google Scholar
  79. Meehan, M., Insko, B., Whitton, M., & Brooks, F. P. (2002). Physiological measures of presence in stressful virtual environments. In Proceedings of the 29th annual conference on Computer Graphics and Interactive Techniques (SIGGRAPH ’02, pp. 645–652). New York: ACM. doi: 10.1145/566570.566630.Google Scholar
  80. Mergner, T., & Becker, W. (1990). Perception of horizontal self-rotation: Multisensory and cognitive aspects. In R. Warren & A. H. Wertheim (Eds.), Perception & control of self-motion (pp. 219–263). Hillsdale/London: Erlbaum.Google Scholar
  81. Mohler, B. J., Thompson, W. B., Riecke, B., & Bülthoff, H. H. (2005). Measuring vection in a large screen virtual environment. In Proceedings of the 2nd symposium on applied perception in graphics and visualization (APGV ’05, pp. 103–109). New York: ACM. 10.1145/1080402.1080421.Google Scholar
  82. Mulder, M., van Paassen, M. M., & Boer, E. R. (2004). Exploring the roles of information in the control of vehicular locomotion – From kinematics and dynamics to cybernetics. Presence: Teleoperators and Virtual Environments, 13, 535–548.Google Scholar
  83. Nakamura, S. (2006). Effects of depth, eccentricity and size of additional static stimulus on visually induced self-motion perception. Vision Research, 46(15), 2344–2353. doi: 10.1016/j.visres.2006.01.016.Google Scholar
  84. Nakamura, S. (2008). Effects of stimulus eccentricity on vection reevaluated with a binocularly defined depth. Japanese Psychological Research, 50(2), 77–86. doi: 10.1111/j.1468-5884.2008.00363.x.Google Scholar
  85. Nakamura, S., & Shimojo, S. (1999). Critical role of foreground stimuli in perceiving visually induced self-motion (vection). Perception, 28(7), 893–902.Google Scholar
  86. Nash, E. B., Edwards, G. W., Thompson, J. A., & Barfield, W. (2000). A review of presence and performance in virtual environments. International Journal of Human-Computer Interaction, 12(1), 1–41. doi: 10.1207/S15327590IJHC1201_1.Google Scholar
  87. Nunez, D. (2003). A connectionist explanation of presence in virtual environments (Master’s thesis). South Africa: University of Cape Town. Retrieved from
  88. Nunez, D., & Blake, E. (2003). Conceptual priming as a determinant of presence in virtual environments. In AFRIGRAPH ’03 Proceedings of the 2nd international conference on computer graphics, virtual reality, visualisation and interaction in Africa (pp. 101–108). New York: ACM Press. doi: 10.1145/602330.602350.Google Scholar
  89. Ohmi, M., Howard, I. P., & Landolt, J. P. (1987). Circular vection as a function of foreground-background relationships. Perception, 16(1), 17–22.Google Scholar
  90. Onimaru, S., Sato, T., & Kitazaki, M. (2010). Veridical walking inhibits vection perception. Journal of Vision, 10(7), 860. doi: 10.1167/10.7.860.Google Scholar
  91. Palmisano, S. (1996). Perceiving self-motion in depth: The role of stereoscopic motion and changing-size cues. Perception & Psychophysics, 58(8), 1168–1176.Google Scholar
  92. Palmisano, S. (2002). Consistent stereoscopic information increases the perceived speed of vection in depth. Perception, 31(4), 463–480. doi: 10.1068/p3321.Google Scholar
  93. Palmisano, S., & Chan, A. Y. C. (2004). Jitter and size effects on vection are immune to experimental instructions and demands. Perception, 33(8), 987–1000.Google Scholar
  94. Palmisano, S., & Gillam, B. (1998). Stimulus eccentricity and spatial frequency interact to determine circular vection. Perception, 27(9), 1067–1077.Google Scholar
  95. Palmisano, S., & Kim, J. (2009). Effects of gaze on vection from jittering, oscillating, and purely radial optic flow. Attention, Perception, & Psychophysics, 71(8), 1842–1853. doi: 10.3758/APP.71.8.1842.Google Scholar
  96. Palmisano, S., Gillam, B. J., & Blackburn, S. G. (2000). Global-perspective jitter improves vection in central vision. Perception, 29(1), 57–67.Google Scholar
  97. Palmisano, S., Allison, R. S., Kim, J., & Bonato, F. (2011). Simulated viewpoint jitter shakes sensory conflict accounts of vection. Seeing and Perceiving, 24(2), 173–200. doi: 10.1163/187847511X570817.Google Scholar
  98. Palmisano, S., Apthorp, D., Seno, T., & Stapley, P. J. (2014). Spontaneous postural sway predicts the strength of smooth vection. Experimental Brain Research, 232(4), 1185–1191. doi: 10.1007/s00221-014-3835-y.Google Scholar
  99. Plumert, J. M., Kearney, J. K., & Cremer, J. F. (2004). Distance perception in real and virtual environments. In ACM SIGGRAPH Symposium on Applied Perception in Graphics and Visualization (APGV) (pp. 27–34). New York: ACM.Google Scholar
  100. Prothero, J. D. (1998). The role of rest frames in vection, presence and motion sickness (PhD thesis). University of Washington. Retrieved from
  101. Prothero, J. D., & Parker, D. E. (2003). A unified approach to presence and motion sickness. In L. J. Hettinger & M. W. Haas (Eds.), Virtual and adaptive environments: Applications, implications, and human performance issues (pp. 47–66). Mahwah, NJ, USA: Lawrence Erlbaum.Google Scholar
  102. Riecke, B. E. (2003). How far can we get with just visual information? Path integration and spatial updating studies in virtual reality (MPI series in biological cybernetics, Vol. 8). Berlin: Logos. Retrieved from Scholar
  103. Riecke, B. E. (2006). Simple user-generated motion cueing can enhance self-motion perception (Vection) in virtual reality. In Proceedings of the ACM symposium on Virtual Reality Software and Technology (VRST) (pp. 104–107). Limassol: ACM. doi: 10.1145/1180495.1180517.Google Scholar
  104. Riecke, B. E. (2009). Cognitive and higher-level contributions to illusory self-motion perception (“vection”): Does the possibility of actual motion affect vection? Japanese Journal of Psychonomic Science, 28(1), 135–139.MathSciNetGoogle Scholar
  105. Riecke, B. E. (2011). Compelling self-motion through virtual environments without actual self-motion – using self-motion illusions (“vection”) to improve user experience in VR. In J.-J. Kim (Ed.), Virtual reality (pp. 149–176). InTech. doi: 10.5772/13150. Retrieved from
  106. Riecke, B. E. (2012). Are left-right hemisphere errors in point-to-origin tasks in VR caused by failure to incorporate heading changes? In C. Stachniss, K. Schill, & D. Uttal, (Eds.) Lecture Notes in Computer Science (Vo. 7463, pp. 143–162). Berlin/Heidelberg: Springer.Google Scholar
  107. Riecke, B. E., & Feuereissen, D. (2012). To move or not to move: Can active control and user-driven motion cueing enhance self-motion perception (“vection”) in virtual reality? In ACM symposium on applied perception SAP (pp. 17–24). Los Angeles: ACM. doi: 10.1145/2338676.2338680.Google Scholar
  108. Riecke, B. E., & McNamara, T. P. (submitted). Where you are affects what you can easily imagine: Environmental geometry elicits sensorimotor interference in remote perspective taking. Cognition.Google Scholar
  109. Riecke, B. E., & Schulte-Pelkum, J. (2006). Using the perceptually oriented approach to optimize spatial presence & ego-motion simulation (No. 153). MPI for Biological Cybernetics. Retrieved from
  110. Riecke, B. E., & Schulte-Pelkum, J. (2013). Perceptual and cognitive factors for self-motion simulation in virtual environments: How can self-motion illusions (“vection”) be utilized? In F. Steinicke, Y. Visell, J. Campos, & A. Lécuyer (Eds.), Human walking in virtual environments (pp. 27–54). New York: Springer. Retrieved from Scholar
  111. Riecke, B. E., van Veen, H. A. H. C., & Bülthoff, H. H. (2002). Visual homing is possible without landmarks: A path integration study in virtual reality. Presence: Teleoperators and Virtual Environments, 11, 443–473. doi: 10.1162/105474602320935810.Google Scholar
  112. Riecke, B. E., Schulte-Pelkum, J., Avraamides, M. N., & Bülthoff, H. H. (2004). Enhancing the visually induced self-motion illusion (vection) under natural viewing conditions in virtual reality. Proceedings of 7th annual workshop presence 2004 (pp. 125–132). doi: Scholar
  113. Riecke, B. E., Heyde, M. V. D., & Bülthoff, H. H. (2005a). Visual cues can be sufficient for triggering automatic, reflexlike spatial updating. ACM Transactions on Applied Perception (TAP), 2, 183–215. doi:
  114. Riecke, B. E., Schulte-Pelkum, J., & Bülthoff, H. H. (2005b). Perceiving simulated ego-motions in virtual reality – Comparing large screen displays with HMDs. Proceedings of the SPIE (Vol. 5666, pp. 344–355). San Jose. doi: 10.1117/12.610846.
  115. Riecke, B. E., Schulte-Pelkum, J., Caniard, F., & Bülthoff, H. H. (2005c). Towards lean and elegant self-motion simulation in virtual reality. Proceedings of the 2005 IEEE Conference 2005 on Virtual Reality, VR ’05 (pp. 131–138). doi: 10.1109/VR.2005.83
  116. Riecke, B. E., Schulte-Pelkum, J., Caniard, F., & Bülthoff, H. H. (2005d). Influence of auditory cues on the visually-induced self-motion illusion (circular vection) in virtual reality. Proceedings of 8th Annual Workshop Presence 2005 (pp. 49–57). Retrieved from
  117. Riecke, B. E., Västfjäll, D., Larsson, P., & Schulte-Pelkum, J. (2005e). Top-down and multi-modal influences on self-motion perception in virtual reality. Proceedings of HCI international 2005 (pp. 1–10). Las Vegas. Retrieved from
  118. Riecke, B. E., Schulte-Pelkum, J., Avraamides, M. N., Heyde, M. V. D., & Bülthoff, H. H. (2006a). Cognitive factors can influence self-motion perception (vection) in virtual reality. ACM Transactions on Applied Perception (TAP), 3(3), 194–216. doi: 10.1145/1166087.1166091.Google Scholar
  119. Riecke, B. E., Schulte-Pelkum, J., & Caniard, F. (2006b). Visually induced linear vection is enhanced by small physical accelerations. 7th International Multisensory Research Forum (IMRF). Dublin.Google Scholar
  120. Riecke, B. E., Cunningham, D. W., & Bülthoff, H. H. (2007). Spatial updating in virtual reality: The sufficiency of visual information. Psychological Research, 71(3), 298–313. doi: Scholar
  121. Riecke, B. E., Feuereissen, D., & Rieser, J. J. (2009a). Auditory self-motion simulation is facilitated by haptic and vibrational cues suggesting the possibility of actual motion. ACM Transactions on Applied Perception, 6(3), 1–22. doi: 10.1145/1577755.1577763.Google Scholar
  122. Riecke, B. E., Väljamäe, A., & Schulte-Pelkum, J. (2009b). Moving sounds enhance the visually-induced self-motion illusion (circular vection) in virtual reality. ACM Transactions on Applied Perception (TAP), 6, 7:1–7:27. doi:
  123. Riecke, B., Bodenheimer, B., McNamara, T., Williams, B., Peng, P., & Feuereissen, D. (2010). Do We need to walk for effective virtual reality navigation? Physical rotations alone may suffice. In C. Hölscher, T. Shipley, M. Olivetti Belardinelli, J. Bateman, & N. Newcombe (Eds.), Spatial cognition VII, lecture notes in computer science (Vol. 6222, pp. 234–247). Berlin/Heidelberg: Springer. Retrieved from doi:  10.1007/978-3-642-14749-4_21.Google Scholar
  124. Riecke, B. E., Feuereissen, D., Rieser, J. J., & McNamara, T. P. (2011). Spatialized sound enhances biomechanically-induced self-motion illusion (vection). In Proceedings of the 2011 annual conference on human factors in computing systems, CHI ’11 (pp. 2799–2802). Presented at the ACM SIG.CHI, Vancouver. doi: 10.1145/1978942.1979356
  125. Rieser, J. J., Ashmead, D. H., Talor, C. R., & Youngquist, G. A. (1990). Visual perception and the guidance of locomotion without vision to previously seen targets. Perception, 19(5), 675–689.Google Scholar
  126. Ruddle, R. A. (2013). The effect of translational and rotational body-based information on navigation. In F. Steinicke, Y. Visell, J. Campos, & A. Lécuyer (Eds.), Human walking in virtual environments (pp. 99–112). New York: Springer. Retrieved from Scholar
  127. Ruddle, R. A., & Lessels, S. (2006). For efficient navigational search, humans require full physical movement, but not a rich visual scene. Psychological Science, 17(6), 460–465. doi: 10.1111/j.1467-9280.2006.01728.x.Google Scholar
  128. Ruddle, R. A., & Peruch, P. (2004). Effects of proprioceptive feedback and environmental characteristics on spatial learning in virtual environments. International Journal Of Human-Computer Studies, 60(3), 299–326.Google Scholar
  129. Sadowski, W., & Stanney, K. (2002). Presence in virtual environments. In K. M. Stanney (Ed.), Handbook of virtual environments (pp. 791–806). Mahwah: Lawrence Erlbaum.Google Scholar
  130. Schubert, T., Friedmann, F., & Regenbrecht, H. (2001). The experience of presence: Factor analytic insights. Presence: Teleoperators and Virtual Environments, 10(3), 266–281.Google Scholar
  131. Schulte-Pelkum, J. (2007). Perception of self-motion: Vection experiments in multi-sensory Virtual Environments (PhD thesis). Ruhr-Universität Bochum. Retrieved from
  132. Schulte-Pelkum, J., Riecke, B. E., von der Heyde, M., & Bülthoff, H. H. (2003). Circular vection is facilitated by a consistent photorealistic scene. Talk presented at the Presence 2003 conference, Aalborg.Google Scholar
  133. Schultze, U. (2010). Embodiment and presence in virtual worlds: A review. Journal of Information Technology, 25(4), 434. doi: 10.1057/jit.2010.25.Google Scholar
  134. Seno, T., Ito, H., & Sunaga, S. (2009). The object and background hypothesis for vection. Vision Research, 49(24), 2973–2982. doi: 10.1016/j.visres.2009.09.017.Google Scholar
  135. Seno, T., Ito, H., & Sunaga, S. (2011a). Attentional load inhibits vection. Attention, Perception, & Psychophysics, 73(5), 1467–1476. doi: 10.3758/s13414-011-0129-3.Google Scholar
  136. Seno, T., Ogawa, M., Ito, H., & Sunaga, S. (2011b). Consistent air flow to the face facilitates vection. Perception, 40(10), 1237–1240.Google Scholar
  137. Seno, T., Palmisano, S., Ito, H., & Sunaga, S. (2012). Vection can be induced without global-motion awareness. Perception, 41(4), 493–497. doi: 10.1068/p7206.Google Scholar
  138. Slater, M. (1999). Measuring presence: A response to the Witmer and Singer presence questionnaire. Presence: Teleoperators and Virtual Environments, 8(5), 560–565. doi: 10.1162/105474699566477.Google Scholar
  139. Slater, M. (2004). How colorful was your day? Why questionnaires cannot assess presence in virtual environments. Presence: Teleoperators and Virtual Environments, 13(4), 484–493.Google Scholar
  140. Slater, M., & Garau, M. (2007). The Use of questionnaire data in presence studies: Do not seriously likert. Presence: Teleoperators and Virtual Environments, 16(4), 447–456. doi: 10.1162/pres.16.4.447.Google Scholar
  141. Slater, M., & Steed, A. (2000). A virtual presence counter. Presence: Teleoperators and Virtual Environments, 9(5), 413–434. doi: 10.1162/105474600566925.Google Scholar
  142. Slater, M., Steed, A., McCarthy, J., & Maringelli, F. (1998). The influence of body movement on subjective presence in virtual environments. Human Factors, 40(3), 469–477.Google Scholar
  143. Steuer, J. S. (1992). Defining virtual reality: Dimensions determining telepresence. Journal of Communication, 42(4), 73–93. doi: 10.1111/j.1460-2466.1992.tb00812.x.Google Scholar
  144. Stroosma, O., (René) van Paassen, M. M., & Mulder, M. (2003). Using the SIMONA research simulator for human-machine interaction research. AIAA Modeling and Simulation Technologies Conference and Exhibit. American Institute of Aeronautics and Astronautics. Retrieved from
  145. Tan, D. S., Gergle, D., Scupelli, P., & Pausch, R. (2006). Physically large displays improve performance on spatial tasks. ACM Transactions on Computer-Human Interaction, 13(1), 71–99. doi:
  146. Telban, R. J., & Cardullo, F. M. (2001). An integrated model of human motion perception with visual-vestibular interaction. AIAA Modeling and Simulation Technologies Conference and Exhibit (pp. 1–11). Montreal.Google Scholar
  147. Thompson, W. B., Willemsen, P., Gooch, A. A., Creem-Regehr, S. H., Loomis, J. M., & Beall, A. C. (2004). Does the quality of the computer graphics matter when judging distances in visually immersive environments? Presence: Teleoperators and Virtual Environments, 13(5), 560–571.Google Scholar
  148. Thomson, J. A. (1983). Is continuous visual monitoring necessary in visually guided locomotion? Journal of Experimental Psychology: Human Perception and Performance, 9(3), 427–443.Google Scholar
  149. Trutoiu, L. C., Streuber, S., Mohler, B. J., Schulte-Pelkum, J., & Bülthoff, H. H. (2008). Tricking people into feeling like they are moving when they are not paying attention. Applied Perception in Graphics and Visualization (APGV) (p. 190). doi:
  150. Trutoiu, L. C., Mohler, B. J., Schulte-Pelkum, J., & Bülthoff, H. H. (2009). Circular, linear, and curvilinear vection in a large-screen virtual environment with floor projection. Computers & Graphics, 33(1), 47–58. doi: 10.1016/j.cag.2008.11.008.Google Scholar
  151. Urbantschitsch, V. (1897). Über Störungen des Gleichgewichtes und Scheinbewegungen. Zeitschrift für Ohrenheilkunde, 31, 234–294.Google Scholar
  152. Väljamäe, A. (2007). Sound for multisensory motion simulators (PhD thesis). Göteborg: Chalmers University of Technology.Google Scholar
  153. Väljamäe, A. (2009). Auditorily-induced illusory self-motion: A review. Brain Research Reviews, 61(2), 240–255. doi: 10.1016/j.brainresrev.2009.07.001.Google Scholar
  154. Väljamäe, A., Larsson, P., Västfjäll, D., & Kleiner, M. (2004). Auditory presence, individualized head-related transfer functions, and illusory ego-motion in virtual environments. Proceedings of 7th Annual Workshop of Presence (pp. 141–147). Valencia.Google Scholar
  155. Väljamäe, A., Larsson, P., Västfjäll, D., & Kleiner, M. (2006). Vibrotactile enhancement of auditory induced self-motion and spatial presence. Journal of the Acoustic Engineering Society, 54(10), 954–963.Google Scholar
  156. Väljamäe, A., Alliprandini, P. M. Z., Alais, D., & Kleiner, M. (2009). Auditory landmarks enhance circular vection in multimodal virtual reality. Journal of the Audio Engineering Society, 57(3), 111–120.Google Scholar
  157. van der Steen, F. A. M. (1998). Self-motion perception (PhD thesis). Delft: Technical University Delft.Google Scholar
  158. van der Steen, F. A. M., & Brockhoff, P. T. M. (2000). Induction and impairment of saturated yaw and surge vection. Perception & Psychophysics, 62(1), 89–99.Google Scholar
  159. Vidyarthi, J. (2012). Sonic Cradle: Evoking mindfulness through “immersive” interaction design (MSc thesis). Surrey: Simon Fraser University. Retrieved from
  160. Von der Heyde, M., & Riecke, B. E. (2002). Embedding presence-related terminology in a logical and functional model. In F. R. Gouveia (Ed.), Presence (pp. 37–52). Retrieved from
  161. von Helmholtz, H. (1866). Handbuch der physiologischen Optik. Leipzig: Voss.Google Scholar
  162. Waller, D., Loomis, J. M., & Steck, S. D. (2003). Inertial cues do not enhance knowledge of environmental layout. Psychonomic Bulletin & Review, 10(4), 987–993.Google Scholar
  163. Waller, D., Loomis, J. M., & Haun, D. B. M. (2004). Body-based senses enhance knowledge of directions in large-scale environments. Psychonomic Bulletin & Review, 11(1), 157–163.Google Scholar
  164. Wallis, G., & Tichon, J. (2013). Predicting the efficacy of simulator-based training using a perceptual judgment task versus questionnaire-based measures of presence. Presence: Teleoperators and Virtual Environments, 22(1), 67–85. doi: 10.1162/PRES_a_00135.Google Scholar
  165. Wang, R. F. (2005). Beyond imagination: Perspective change problems revisited. Psicológica, 26(1), 25–38.zbMATHGoogle Scholar
  166. Wann, J., & Rushton, S. (1994). The illusion of self-motion in virtual-reality environments. Behavioral and Brain Sciences, 17(2), 338–340.Google Scholar
  167. Warren, H. C. (1895). Sensations of rotation. Psychological Review, 2(3), 273–276. doi: 10.1037/h0074437.MathSciNetGoogle Scholar
  168. Warren, R., & Wertheim, A. H. (Eds.). (1990). Perception & control of self-motion. Hillsdale/London: Erlbaum.Google Scholar
  169. Wertheim, A. H. (1994). Motion perception during self-motion – The direct versus inferential controversy revisited. Behavioral and Brain Sciences, 17(2), 293–311.Google Scholar
  170. Willemsen, P., Gooch, A. A., Thompson, W. B., & Creem-Regehr, S. H. (2008). Effects of stereo viewing conditions on distance perception in virtual environments. Presence: Teleoperators and Virtual Environments, 17(1), 91–101. doi:
  171. Wist, E. R., Diener, H. C., Dichgans, J., & Brandt, T. (1975). Perceived distance and perceived speed of self-motion – Linear vs angular velocity. Perception & Psychophysics, 17(6), 549–554.Google Scholar
  172. Witmer, B. G., & Kline, P. B. (1998). Judging perceived and traversed distance in virtual environments. Presence: Teleoperators and Virtual Environments, 7(2), 144–167.Google Scholar
  173. Witmer, B. G., & Sadowski, W. J. (1998). Nonvisually guided locomotion to a previously viewed target in real and virtual environments. Human Factors, 40(3), 478–488.Google Scholar
  174. Witmer, B. G., & Singer, M. J. (1998). Measuring presence in virtual environments: A presence questionnaire. Presence: Teleoperators and Virtual Environments, 7(3), 225–240. doi: 10.1162/105474698565686.Google Scholar
  175. Witmer, B. G., Jerome, C. J., & Singer, M. J. (2005). The factor structure of the presence questionnaire. Presence: Teleoperators and Virtual Environments, 14(3), 298–312. doi: 10.1162/105474605323384654.Google Scholar
  176. Wolpert, L. (1990). Field-of-view information for self-motion perception. In R. Warren & A. H. Wertheim (Eds.), Perception & control of self-motion (pp. 101–126). Hillsdale: Erlbaum.Google Scholar
  177. Wong, S. C. P., & Frost, B. J. (1981). The effect of visual-vestibular conflict on the latency of steady-state visually induced subjective rotation. Perception & Psychophysics, 30(3), 228–236.Google Scholar
  178. Wood, R. W. (1895). The “Haunted Swing” illusion. Psychological Review, 2(3), 277–278. doi: 10.1037/h0073333.Google Scholar
  179. Wright, W. G. (2009). Linear vection in virtual environments can be strengthened by discordant inertial input. 31st Annual international conference of the IEEE EMBS (Engineering in Medicine and Biology Society) (pp. 1157–1160). Minneapolis. doi: 10.1109/IEMBS.2009.5333425
  180. Wright, W. G., DiZio, P., & Lackner, J. R. (2005). Vertical linear self-motion perception during visual and inertial motion: More than weighted summation of sensory inputs. Journal of Vestibular Research: Equilibrium & Orientation, 15(4), 185–195.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.School of Interactive Arts and TechnologySimon Fraser UniversitySurreyCanada
  2. 2.Department of Educational PsychologyVechta UniversityVechtaGermany

Personalised recommendations