Support Vector Machines for Improved IP Detection with Soft Physical Hash Functions

  • Ludovic-Henri Gustin
  • François Durvaux
  • Stéphanie KerckhofEmail author
  • François-Xavier Standaert
  • Michel Verleysen
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8622)


Side-channel analysis is a powerful tool to extract secret information from microelectronic devices. Its most frequently considered application is destructive, i.e. key recovery attacks against cryptographic implementations. More recently, it has also been considered constructively, in the context of intellectual property protection/detection, e.g. through the use of side-channel based watermarks or soft physical hash functions. The latter solution is interesting from the application point-of-view, because it does not require any modification of the designs to protect (hence it implies no performance losses). Previous works in this direction have exploited simple (correlation-based) statistical tools in different (more or less challenging) scenarios. In this paper, we investigate the use of support vector machines for this purpose. We first argue that their single-class extension is naturally suited to the problem of intellectual property detection. We then show experimentally that they allow dealing with more complex scenarios than previously published, hence extending the relevance and applicability of soft physical hash functions.


Support Vector Machine Intellectual Property Hash Function Similarity Score Block Cipher 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work has been funded in parts by the Walloon region WIST program project MIPSs and by the European Commission through the ERC project 280141 (acronym CRASH). François-Xavier Standaert is an Associate Researcher of the Belgian Fund for Scientific Research (FNRS-F.R.S.). Stéphanie Kerckhof is a PhD student funded by a FRIA grant, Belgium.

Supplementary material


  1. 1.
  2. 2.
    32nd IEEE Symposium on Security and Privacy, S&P 2011, 22–25 May 2011, Berkeley, California, USA. IEEE Computer Society (2011)Google Scholar
  3. 3.
    Abdel-Hamid, A.T., Tahar, S., Aboulhamid, E.M.: A survey on IP watermarking techniques. Des. Autom. Emb. Sys. 9(3), 211–227 (2004)CrossRefGoogle Scholar
  4. 4.
    Baetoniu, C.: FPGA IFF copy protection using Dallas semiconductor/Maxim DS2432 secure EEPROMs. XAPP780, May 28 (2010)Google Scholar
  5. 5.
    Bartkewitz, T., Lemke-Rust, K.: Efficient template attacks based on probabilistic multi-class support vector machines. In: Mangard [29], pp. 263–276Google Scholar
  6. 6.
    Becker, G.T., Kasper, M., Moradi, A., Paar, C.: Side-channel based watermarks for integrated circuits. In: HOST, pp. 30–35 (2010)Google Scholar
  7. 7.
    Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw, M.J.B., Seurin, Y., Vikkelsoe, C.: PRESENT: An ultra-lightweight block cipher. In: Paillier and Verbauwhede [31], pp. 450–466Google Scholar
  8. 8.
    Boser, B.E., Guyon, I.M., Vapnik, V.N.: A training algorithm for optimal margin classifiers. In: Proceedings of the 5th Annual Workshop on Computational Learning Theory, COLT ’92, pp. 144–152, New York, NY, USA, 1992. ACM (1992)Google Scholar
  9. 9.
    De Cannière, C., Dunkelman, O., Knezevic, M.: KATAN and KTANTAN - a family of small and efficient hardware-oriented block ciphers. In: Clavier and Gaj [13], pp. 272–288Google Scholar
  10. 10.
    Chang, C.-C., Lin, C.-J.: LIBSVM: A library for support vector machines. ACM Trans. Intell. Syst. Technol. 2, 27:1–27:27 (2011). (Software. Scholar
  11. 11.
    Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In: Jr. et al. [21], pp. 13–28Google Scholar
  12. 12.
    Clavier, C., Gaj, K. (eds.): CHES 2009. LNCS, vol. 5747. Springer, Heidelberg (2009)zbMATHGoogle Scholar
  13. 13.
    Daemen, J., Peeters, M., Assche, G.V., Rijmen, V.: Nessie proposal: NOEKEON.
  14. 14.
    Durvaux, F., Gérard, B., Kerckhof, S., Koeune, F., Standaert, F.-X.: Intellectual property protection for integrated systems using soft physical hash functions. In: Lee, D.H., Yung, M. (eds.) WISA 2012. LNCS, vol. 7690, pp. 208–225. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  15. 15.
    Goubin, L., Matsui, M. (eds.): CHES 2006. LNCS, vol. 4249. Springer, Heidelberg (2006)zbMATHGoogle Scholar
  16. 16.
    Guajardo, J., Kumar, S.S., Schrijen, G.-J., Tuyls, P.: FPGA intrinsic PUFs and their use for IP protection. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 63–80. Springer, Heidelberg (2007) CrossRefGoogle Scholar
  17. 17.
    Heuser, A., Zohner, M.: Intelligent machine homicide - breaking cryptographic devices using support vector machines. In: Schindler and Huss [34], pp. 249–264Google Scholar
  18. 18.
    Hong, D., Sung, J., Hong, S., Lim, J., Lee, S., Koo, B., Lee, C., Chang, D., Lee, J., Jeong, K., Kim, H., Kim, J., Chee, S.: HIGHT: A new block cipher suitable for low-resource device. In: Goubin and Matsui [16], pp. 46–59Google Scholar
  19. 19.
    Hospodar, G., Gierlichs, B., De Mulder, E., Verbauwhede, I., Vandewalle, J.: Machine learning in side-channel analysis: a first study. J. Cryptogr. Eng. 1(4), 293–302 (2011)CrossRefGoogle Scholar
  20. 20.
    Kaliski Jr, B.S., Koç, Ç.K., Paar, C. (eds.): CHES 2002. LNCS, vol. 2523. Springer, Heidelberg (2003)Google Scholar
  21. 21.
    Kahng, A.B., Lach, J., Mangione-Smith, W.H., Mantik, S., Markov, I.L., Potkonjak, M., Tucker, P., Wang, H., Wolfe, G.: Watermarking techniques for intellectual property protection. In: DAC, pp. 776–781 (1998)Google Scholar
  22. 22.
    Kahng, A.B., Mantik, S., Markov, I.L., Potkonjak, M., Tucker, P., Wang, H., Wolfe, G.: Robust IP watermarking methodologies for physical design. In: DAC, pp. 782–787 (1998)Google Scholar
  23. 23.
    Kerckhof, S., Durvaux, F., Standaert, F.-X., Gérard, B.: Intellectual property protection for FPGA designs with soft physical hash functions: First experimental results. In: HOST, pp. 7–12 (2013)Google Scholar
  24. 24.
    Lefèbvre, F., Czyz, J., Macq, B.M.: A robust soft hash algorithm for digital image signature. ICIP 2, 495–498 (2003)Google Scholar
  25. 25.
    Lerman, L., Bontempi, G., Markowitch, O.: Side channel attack: an approach based on machine learning. In: Constructive Side-Channel Analysis and Secure Design, COSADE (2011)Google Scholar
  26. 26.
    Lewandowski, M., Meana, R., Morrison, M., Katkoori, S.: A novel method for watermarking sequential circuits. In: HOST, pp. 21–24 (2012)Google Scholar
  27. 27.
    Linke, B.: Xilinx FPGA IFF copy protection with 1-wire SHA-1 secure memories. XAPP3826, July 21 (2006)Google Scholar
  28. 28.
    Mangard, S. (ed.): CARDIS 2012. LNCS, vol. 7771. Springer, Heidelberg (2013)Google Scholar
  29. 29.
    Mangard, S., Oswald, E., Standaert, F.-X.: One for all - all for one: unifying standard differential power analysis attacks. IET Inf. Secur. 5(2), 100–110 (2011)CrossRefGoogle Scholar
  30. 30.
    Paillier, P., Verbauwhede, I. (eds.): CHES 2007. LNCS, vol. 4727. Springer, Heidelberg (2007)zbMATHGoogle Scholar
  31. 31.
    Rao, J.R., Sunar, B. (eds.): CHES 2005. LNCS, vol. 3659. Springer, Heidelberg (2005)zbMATHGoogle Scholar
  32. 32.
    Roy, B., Meier, W. (eds.): FSE 2004. LNCS, vol. 3017. Springer, Heidelberg (2004)zbMATHGoogle Scholar
  33. 33.
    Schindler, W., Huss, S.A. (eds.): COSADE 2012. LNCS, vol. 7275. Springer, Heidelberg (2012)Google Scholar
  34. 34.
    Schindler, W., Lemke, K., Paar, C.: A stochastic model for differential side channel cryptanalysis. In: Rao and Sunar [32], pp. 30–46Google Scholar
  35. 35.
    Schölkopf, B., Platt, J.C., Shawe-Taylor, J.C., Smola, A.J., Williamson, R.C.: Estimating the support of a high-dimensional distribution. Neural Comput. 13(7), 1443–1471 (2001)CrossRefzbMATHGoogle Scholar
  36. 36.
    Schölkopf, B., Smola, A.J., Williamson, R.C., Bartlett, P.L.: New support vector algorithms. Neural Comput. 12(5), 1207–1245 (2000)CrossRefGoogle Scholar
  37. 37.
    Simpson, E., Schaumont, P.: Offline hardware/software authentication for reconfigurable platforms. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 311–323. Springer, Heidelberg (2006) CrossRefGoogle Scholar
  38. 38.
    Standaert, F.-X., Piret, G., Rouvroy, G., Quisquater, J.-J., Legat, J.-D.: ICEBERG : An involutional cipher efficient for block encryption in reconfigurable hardware. In: Roy and Meier [33], pp. 279–299Google Scholar
  39. 39.
    Vapnik, V.N.: The Nature of Statistical Learning Theory. Springer, New York (1995)CrossRefzbMATHGoogle Scholar
  40. 40.
    Ziener, D., Teich, J.: Power signature watermarking of IP cores for FPGAs. Sig. Process. Syst. 51(1), 123–136 (2008)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Ludovic-Henri Gustin
    • 1
    • 2
  • François Durvaux
    • 1
  • Stéphanie Kerckhof
    • 1
    Email author
  • François-Xavier Standaert
    • 1
  • Michel Verleysen
    • 2
  1. 1.Crypto Group - ICTEAMUniversité catholique de LouvainLouvain-la-NeuveBelgium
  2. 2.Machine Learning Group - ICTEAMUniversité catholique de LouvainLouvain-la-NeuveBelgium

Personalised recommendations