Advertisement

On Adaptive Bandwidth Selection for Efficient MIA

  • Mathieu CarboneEmail author
  • Sébastien Tiran
  • Sébastien Ordas
  • Michel Agoyan
  • Yannick Teglia
  • Gilles R. Ducharme
  • Philippe Maurine
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8622)

Abstract

Recently, a generic DPA attack using the mutual information index as the side channel distinguisher has been introduced. Mutual Information Analysis’s (MIA) main interest is its claimed genericity. However, it requires the estimation of various probability density functions (PDF), which is a task that involves the complicated problem of selecting tuning parameters. This problem could be the cause of the lower efficiency of MIA that has been reported. In this paper, we introduce an approach that selects the tuning parameters with the goal of optimizing the performance of MIA. Our approach differs from previous works in that it maximizes the ability of MIA to discriminate one key among all guesses rather than optimizing the accuracy of PDF estimates. Application of this approach to various leakage traces confirms the soundness of our proposal.

Keywords

Mutual Information Query Point Probability Distribution Function Kernel Density Estimator Leakage Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999) CrossRefGoogle Scholar
  2. 2.
    Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29. Springer, Heidelberg (2004) CrossRefGoogle Scholar
  3. 3.
    Aumonier, S.: Generalized correlation power analysis. In: ECRYPT Workshop on Tools For Cryptanalysis, Kraków, Poland, September 2007Google Scholar
  4. 4.
    Gierlichs, B., Batina, L., Tuyls, P., Preneel, B.: Mutual information analysis. In: Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 426–442. Springer, Heidelberg (2008) CrossRefGoogle Scholar
  5. 5.
    Batina, L., Gierlichs, B., Prouff, E., Rivain, M., Standaert, F.X., Veyrat-Charvillon, N.: Mutual information analysis: a comprehensive study. Cryptol. J. 24, 269–291 (2001). Springer, New YorkCrossRefMathSciNetGoogle Scholar
  6. 6.
    Prouff, E., Rivain, M.: Theoretical and practical aspects of mutual information-based side channel analysis. Int. J. Adv. Comput. Technol. (IJACT) 2(2), 121–138 (2010)zbMATHMathSciNetGoogle Scholar
  7. 7.
    Moradi, A., Mousavi, N., Paar, C., Salmasizadeh, M.: A comparative study of mutual information analysis under a Gaussian assumption. In: Youm, H.Y., Yung, M. (eds.) WISA 2009. LNCS, vol. 5932, pp. 193–205. Springer, Heidelberg (2009) CrossRefGoogle Scholar
  8. 8.
    Veyrat-Charvillon, N., Standaert, F.-X.: Mutual information analysis: how, when and why? In: Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 429–443. Springer, Heidelberg (2009) CrossRefGoogle Scholar
  9. 9.
    Le, T.-H., Berthier, M.: Mutual information analysis under the view of higher-order statistics. In: Echizen, I., Kunihiro, N., Sasaki, R. (eds.) IWSEC 2010. LNCS, vol. 6434, pp. 285–300. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  10. 10.
    Gierlichs, B., Batina, L., Preneel, B., Verbauwhede, I.: Revisiting higher-order DPA attacks: multivariate mutual information analysis. In: Pieprzyk, J. (ed.) CT-RSA 2010. LNCS, vol. 5985, pp. 221–234. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  11. 11.
    Flament, F., Guilley, S., Danger, J.L., Elaabid, M.A., Maghrebi, H., Sauvage, L.: About probability density function estimation for side channel analysis. In: Proceedings of International Workshop on Constructive Side-Channel Analysis and Secure Design (COSADE), pp. 15–23 (2010)Google Scholar
  12. 12.
    Whitnall, C., Oswald, E.: A comprehensive evaluation of mutual information analysis using a fair evaluation framework. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 316–334. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  13. 13.
    Veyrat-Charvillon, N., Standaert, F.-X.: Generic side-channel distinguishers: improvements and limitations. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 354–372. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  14. 14.
    Venelli, A.: Efficient entropy estimation for mutual information analysis using B-splines. In: Samarati, P., Tunstall, M., Posegga, J., Markantonakis, K., Sauveron, D. (eds.) WISTP 2010. LNCS, vol. 6033, pp. 17–30. Springer, Heidelberg (2010) Google Scholar
  15. 15.
    Rosenblatt, M.: Remark on some nonparametric estimates of a density function. Ann. Math. Stat. 27, 832–837 (1956)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Parzen, E.: On the estimation of a probability density function and the mode. Ann. Math. Stat. 33, 1065–1076 (1962)CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Sheather, S.J.: Density estimation. Stat. Sci. 19(4), 588–597 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Silverman, B.W., Green, P.J.: Density Estimation for Statistics and Data Analysis. Chapman and Hall, London (1986)CrossRefzbMATHGoogle Scholar
  19. 19.
    VLSI Research Group and TELECOM ParisTech: The DPA contest (2008/2009)Google Scholar
  20. 20.
    Standaert, F.-X., Gierlichs, B., Verbauwhede, I.: Partition vs. comparison side-channel distinguishers: an empirical evaluation of statistical tests for Univariate side-channel attacks against two unprotected CMOS devices. In: Lee, P.J., Cheon, J.H. (eds.) ICISC 2008. LNCS, vol. 5461, pp. 253–267. Springer, Heidelberg (2009) CrossRefGoogle Scholar
  21. 21.
    Messerges, T.S., Dabbish, E.A., Sloan, R.H., Messerges, T.S., Dabbish, E.A., Sloan, R.H.: Investigations of power analysis attacks on smartcards. In: Proceedings of the USENIX Workshop on Smartcard Technology, pp. 151–162 (1999)Google Scholar
  22. 22.
    Bévan, R., Knudsen, E.W.: Ways to enhance differential power analysis. In: Lee, P.J., Lim, C.H. (eds.) ICISC 2002. LNCS, vol. 2587, pp. 327–342. Springer, Heidelberg (2003) CrossRefGoogle Scholar
  23. 23.
    Tiran, S., Maurine, P.: SCA with magnitude squared coherence. In: Mangard, S. (ed.) CARDIS 2012. LNCS, vol. 7771, pp. 234–247. Springer, Heidelberg (2013) CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Mathieu Carbone
    • 1
    • 2
    Email author
  • Sébastien Tiran
    • 2
  • Sébastien Ordas
    • 2
  • Michel Agoyan
    • 1
  • Yannick Teglia
    • 1
  • Gilles R. Ducharme
    • 3
  • Philippe Maurine
    • 2
    • 4
  1. 1.ST Microelectronics - Advanced System TechnologyRoussetFrance
  2. 2.LIRMM - Laboratoire d’Informatique de Robotique et de Microélectronique de MontpellierMontpellier Cedex 5France
  3. 3.EPS - Institut de Mathématiques et de Modélisation de Montpellier 2, Place Eugène BataillonUniversité Montpellier 2Montpellier Cedex 5France
  4. 4.CEA - Centre Microélectronique de Provence Georges CharpakGardanneFrance

Personalised recommendations