Advertisement

On the Use of RSA Public Exponent to Improve Implementation Efficiency and Side-Channel Resistance

  • Christophe GiraudEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8622)

Abstract

Since the end of the nineties, cryptographic developers must not only provide fast implementations but they must also take Side-Channel Analysis and Fault Injection into account. From that time, many side-channel and fault countermeasures have been proposed to reach a double goal: provide a high level of security while having the smallest impact on performance and memory consumption. In the particular case of RSA, the knowledge of the public exponent has been used to propose the most efficient fault countermeasure in terms of security and performance. However so far no study has been published which exploits such a variable to improve RSA efficiency and side-channel resistance.

In this paper, we fill this gap by proposing an original CRT-RSA implementation which makes use of the knowledge of the public exponent. In particular, we investigate an efficient method using only 4 private key parameters out of 5 and we also propose a free message blinding method to reinforce side-channel resistance.

Keywords

CRT-RSA Efficient implementation Side-channel countermeasure 

Notes

Acknowledgments

The author would like to thank Guillaume Barbu, Alberto Battistello, Emmanuelle Dottax and Gilles Piret for their comments on the preliminary version of this paper.

Supplementary material

References

  1. 1.
    Amiel, F., Feix, B., Villegas, K.: Power analysis for secret recovering and reverse engineering of public key algorithms. In: Adams, C., Miri, A., Wiener, M. (eds.) SAC 2007. LNCS, vol. 4876, pp. 110–125. Springer, Heidelberg (2007) CrossRefGoogle Scholar
  2. 2.
    Barbu, G., Battistello, A., Dabosville, G., Giraud, C., Renault, G., Renner, S., Zeitoun, R.: Combined attack on CRT-RSA. In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 198–215. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  3. 3.
    Battistello, A., Giraud, C.: Fault analysis of infective AES computations. In: Fischer, W., Schmidt, J.-M. (eds.) Fault Diagnosis and Tolerance in Cryptography - FDTC 2014, pp. 101–107. IEEE Computer Society (2014)Google Scholar
  4. 4.
    Bauer, A., Jaulmes, E., Prouff, E., Wild, J.: Horizontal and vertical side-channel attacks against secure RSA implementations. In: Dawson, E. (ed.) CT-RSA 2013. LNCS, vol. 7779, pp. 1–17. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  5. 5.
    Bonech, D., DeMillo, R., Lipton, R.: New Threat Model Breaks Crypto Codes. Bellcore Press Release, Morristown (1996)Google Scholar
  6. 6.
    Boneh, D., DeMillo, R.A., Lipton, R.J.: On the importance of checking cryptographic protocols for faults. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 37–51. Springer, Heidelberg (1997) CrossRefGoogle Scholar
  7. 7.
    Boscher, A., Naciri, R., Prouff, E.: CRT RSA algorithm protected against fault attacks. In: Sauveron, D., Markantonakis, K., Bilas, A., Quisquater, J.-J. (eds.) WISTP 2007. LNCS, vol. 4462, pp. 229–243. Springer, Heidelberg (2007) Google Scholar
  8. 8.
    Chevallier-Mames, B., Ciet, M., Joye, M.: Low-cost solutions for preventing simple side-channel analysis: side-channel atomicity. IEEE Trans. Comput. 53(6), 760–768 (2004)CrossRefGoogle Scholar
  9. 9.
    Clavier, C., Feix, B.: Updated recommendations for blinded exponentiation vs. single trace analysis. In: Prouff, E. (ed.) COSADE 2013. LNCS, vol. 7864, pp. 80–98. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  10. 10.
    Clavier, C., Feix, B., Gagnerot, G., Giraud, C., Roussellet, M., Verneuil, V.: ROSETTA for single trace analysis. In: Galbraith, S., Nandi, M. (eds.) INDOCRYPT 2012. LNCS, vol. 7668, pp. 140–155. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  11. 11.
    Clavier, C., Feix, B., Gagnerot, G., Roussellet, M., Verneuil, V.: Horizontal correlation analysis on exponentiation. In: Soriano, M., Qing, S., López, J. (eds.) ICICS 2010. LNCS, vol. 6476, pp. 46–61. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  12. 12.
    Coron, J.-S., Giraud, C., Morin, N., Piret, G., Vigilant, D.: Fault attacks and countermeasures on vigilant’s RSA-CRT algorithm. In: Breveglieri, L., Joye, M., Koren, I., Naccache, D., Verbauwhede, I. (eds.) Fault Diagnosis and Tolerance in Cryptography - FDTC 2010, pp. 89–96. IEEE Computer Society (2010)Google Scholar
  13. 13.
    Couvreur, C., Quisquater, J.-J.: Fast decipherment algorithm for RSA public-key cryptosystem. Electron. Lett. 18(21), 905–907 (1982)CrossRefGoogle Scholar
  14. 14.
    EMV. Integrated Circuit Card Specifications for Payment Systems - Book 2 - Security and Key Management, June 2008Google Scholar
  15. 15.
    Gandolfi, K., Mourtel, C., Olivier, F.: Electromagnetic analysis: concrete results. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, p. 251. Springer, Heidelberg (2001) CrossRefGoogle Scholar
  16. 16.
    Garner, H.: The residue number system. IRE Trans. Electron. Comput. 8(6), 140–147 (1959)CrossRefGoogle Scholar
  17. 17.
    Giraud, C.: An RSA implementation resistant to fault attacks and to simple power analysis. IEEE Trans. Comput. 55(9), 1116–1120 (2006)CrossRefGoogle Scholar
  18. 18.
    Joye, M.: Protecting RSA against fault attacks: the embedding method. In: Breveglieri, L., Gueron, S., Koren, I., Naccache, D., Seifert, J.-P. (eds.) Fault Diagnosis and Tolerance in Cryptography - FDTC 2009, pp. 41–45. IEEE Computer Society (2009)Google Scholar
  19. 19.
    Joye, M., Tunstall, M.: Fault Analysis in Cryptography. Information Security and Cryptography. Springer, Heidelberg (2012)CrossRefzbMATHGoogle Scholar
  20. 20.
    Joye, M., Yen, S.-M.: The Montgomery powering ladder. In: Kaliski Jr, B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 291–302. Springer, Heidelberg (2003) CrossRefGoogle Scholar
  21. 21.
    Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 104–113. Springer, Heidelberg (1996) Google Scholar
  22. 22.
    Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999) CrossRefGoogle Scholar
  23. 23.
    Lenstra, A.K., Hughes, J.P., Augier, M., Bos, J.W., Kleinjung, T., Wachter, C.: Ron was wrong, Whit is right. Cryptology ePrint Archive, report 2012/064 (2012). http://eprint.iacr.org/
  24. 24.
    Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks - Revealing the Secrets of Smartcards. Springer, New York (2007)Google Scholar
  25. 25.
    Novak, R.: SPA-based adaptive chosen-ciphertext attack on RSA implementation. In: Naccache, D., Paillier, P. (eds.) PKC 2002. LNCS, vol. 2274, pp. 252–262. Springer, Heidelberg (2002) CrossRefGoogle Scholar
  26. 26.
    Oracle Corp. Application Programming Interface, Java Card Platform, Version 3.0.4 Classic Edition (2011)Google Scholar
  27. 27.
    PKCS #1. RSA Cryptography Specifications Version 2.1. RSA Laboratories (2003)Google Scholar
  28. 28.
    Rivain, M.: Securing RSA against fault analysis by double addition chain exponentiation. In: Fischlin, M. (ed.) CT-RSA 2009. LNCS, vol. 5473, pp. 459–480. Springer, Heidelberg (2009) CrossRefGoogle Scholar
  29. 29.
    Rivest, R., Shamir, A., Adleman, L.: A method for obtaining digital signatures and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978)CrossRefzbMATHMathSciNetGoogle Scholar
  30. 30.
    Shamir, A.: How to check modular exponentiation. In: Eurocrypt’97 rump session (1997)Google Scholar
  31. 31.
    Walter, C.D.: Sliding windows succumbs to Big Mac attack. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp. 286–299. Springer, Heidelberg (2001) CrossRefGoogle Scholar
  32. 32.
    Yen, S.-M., Kim, S., Lim, S., Moon, S.-J.: RSA speedup with residue number system immune against hardware fault cryptanalysis. In: Kim, K. (ed.) ICISC 2001. LNCS, vol. 2288, pp. 397–413. Springer, Heidelberg (2002) CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Cryptography and Security GroupOberthur TechnologiesPessacFrance

Personalised recommendations