Skip to main content

Mathematical Representation of Scattered Fields from Chipless RFID Tags

  • Chapter
  • First Online:
Chipless RFID

Abstract

As previously mentioned, a chipless RFID system is comprised of three basic components: reader, antenna, and chipless tag. The antenna illuminates the reader area and induces currents on the metallic tags. The induced currents re-radiate the scattered fields, which will be processed in the reader for decoding the IDs of the tags. The scattering phenomena is a sophisticated process, which can be described in a simple mathematical model. This mathematical model provides us insight of the electromagnetic behavior of the structure, which is useful in the design process of chipless RFID tags. The induced currents on the tag structure can be expanded in different ways. One method is to expand the induced currents versus the singularity poles of the tag, which is the basis of the singularity expansion method (SEM). In such a representation, the solution is expressed as a collection of poles, branch cuts, and an entire function in the complex frequency plane. In this chapter, after a comprehensive study of the SEM, the wavefront representation of the SEM is presented to describe the scattering mechanisms in the early-time and late-time modes. Altes’ model is employed to describe the early-time response using the impulse responses of the scattering centers of the scatterer. Subsequently, the equivalent circuit of the scatterer is introduced based on the SEM representation of the fields. As an example, the current modes and associated radiated fields from a dipole antenna are studied.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baum CE (2012) The singularity expansion method in electromagnetics: a summary survey and open questions. SUMMA Foundation, Akron, OH

    Google Scholar 

  2. Baum CE (1971) On the singularity expansion method for the solution of electromagnetic interaction problems. Interaction Note 88, Air Force Weapons Lab., pp 1–111

    Google Scholar 

  3. Tesche F (1973) The far-field response of a step-excited linear antenna using SEM. IEEE Trans Antenna Propag 23(6):834–838

    Article  Google Scholar 

  4. Baum CE (1986) The singularity expansion method: background and developments. IEEE Antennas Propag Soc Newslett 28(4):14–22

    Article  Google Scholar 

  5. Barnes PR (1972) On the singularity expansion method as applied to the EMP analysis and simulation of the cylindrical dipole antenna. AFWL Interaction Note 146, Apr 1972

    Google Scholar 

  6. Umashankar KR, Wilton DR (1972) Transient scattering by a thin wire in free space and above ground plane using the singularity expansion method. AFWL Interaction Note 236, Apr 1972

    Google Scholar 

  7. Umashankar KR, Wilton DR (1974) Transient scattering characterization of circular loop using singularity expansion method. AFWL Interaction Note 259, 1974

    Google Scholar 

  8. Martinez JP, Pine ZL, Tesche FM (1972) Numerical results of the singularity expansion method as applied to a plane wave incident on a perfectly conducting sphere. AFWL Interaction Note 112, 1972

    Google Scholar 

  9. Dolph CL, Cho SK (1980) On the relationship between the singularity expansion method and the mathematical theory of scattering. IEEE Trans Antennas Propag 28(6):888–897

    Article  MATH  MathSciNet  Google Scholar 

  10. Baum CB (1976) Emerging technology for transient and broad-band analysis and synthesis of antennas and scatterers. Proc IEEE 64(11):1598–1616

    Article  MathSciNet  Google Scholar 

  11. Licul S, Davis WD (2005) Unified frequency and time-domain antenna modeling and characterization. IEEE Trans Antennas Propag 53(9):2882–2888

    Article  Google Scholar 

  12. Licul S, Davis WD (2004) Pole/residue modeling of UWB antenna systems. IEEE antennas and propagation society international symposium, 2004, pp 1748–1751

  13. Davis WA, Licul S (2004) Ultra-wideband antennas, in Introduction to Ultra-Wideband Communications. Reed JH (eds) Englewood Cliffs, NJ: Prentice-Hall

    Google Scholar 

  14. Caratelli D, Yarokoy A (2010) Unified time- and frequency-domain approach for accurate modeling of electromagnetic radiation processes in ultrawideband antennas. IEEE Trans Antennas Propag 58(10):3239–3255

    Article  Google Scholar 

  15. Bedrosian G (1977) Stick-model characterization of natural frequencies and natural modes of the aircraft. AFWL Interaction Note 326, 1977

    Google Scholar 

  16. Rothwell EJ, Nyquist DP, Chen YF, Drachman B (1985) Radar target discrimination using the excitation-pulse technique. IEEE Trans Antennas Propag 33(9):929–937

    Article  Google Scholar 

  17. Li Q, Ilavarasan P, Ross JE, Rothwell EJ (1998) Radar target identification using a combined early-time/late-time E-pulse technique. IEEE Trans Antennas Propag 46(9):1272–1278

    Article  Google Scholar 

  18. Chen YF, Nyquist DP, Rothwell EJ, Webb L, Drachman B (1986) Radar target discrimination by convolution of radar return with extinction-pulses and single-mode extraction signals. IEEE Trans Antennas Propag 34(7):896–904

    Article  Google Scholar 

  19. Baum CE (1996) Discrimination of buried targets via the singularity expansion. AFWL Interaction Note 521, 1996

    Google Scholar 

  20. Chen CC, Peters L Jr, Burnside WD (1995) Ground penetration radar target classification via complex natural resonances. Antennas and Propagation Society International Symposium, pp 1586–1589

  21. Chen CC, Higgins MB, O’Neill K, Detsch R (1997) Buried unexploded ordnance identification via complex natural resonances. IEEE Trans Antennas Propag 45(11):1645–1654

    Article  Google Scholar 

  22. Blischak A, Manteghi M (2009) Pole residue techniques for chipless RFID detection. In Antennas and Propagation Society International Symposium, 2009. APSURSI ‘09. IEEE, pp 1–4.

    Google Scholar 

  23. Blischak AT, Manteghi M (2011) Embedded singularity chipless RFID tags. IEEE Trans Antennas Propag 59:3961–3968

    Article  Google Scholar 

  24. Rezaiesarlak R, Manteghi M (2014) Complex-natural-resonance-based design of chipless RFID tag for high density data. IEEE Trans Antennas Propag 52:3109–3121

    Google Scholar 

  25. Hong SK, Davis WA (2013) Use of tumor-specific resonance for more efficient microwave hyperthermia of breast cancer. Microw Opt Technol Lett 55(11):2659–2665

    Article  Google Scholar 

  26. Hong SK, Davis WA (2012) Use of tumor-specific resonances in microwave hyperthermia of breast. In Antennas and Propagation Society International Symposium (APSURSI), 2012 IEEE

    Google Scholar 

  27. Manteghi M, Cooper DB, Vlachos PP (2012) Application of singularity expansion method for monitoring the deployment of arterial stents. Microw Opt Technol Lett 54(10):2241–2246

    Article  Google Scholar 

  28. Van Bladel J (2007) Electromagnetic fields, 2nd edn. IEEE Press, New York

    Book  Google Scholar 

  29. Salehi M, Manteghi M (2014) Transient characteristics of small antennas. IEEE Trans Antennas Propag 65:2418–2429

    Google Scholar 

  30. Salehi M, Manteghi M (2013) A wideband frequency-shift keying modulation technique using transient state of a small antenna. Prog Electromagnet Res 143:421–445

    Article  Google Scholar 

  31. Salehi M, Manteghi M (2014) Self-contained compact transmitter for high-rate transmission. Electron Lett 50(4):313–316

    Article  Google Scholar 

  32. Schelkunoff SA (1944) Representation of impedance functions in terms of resonant frequencies. Proc IRE 32(2):83–90

    Article  Google Scholar 

  33. Baum CE (1976) The singularity expansion method. In: Transient electromagnetic fields. Springer, New York

    Google Scholar 

  34. Jin J-M (2010) Theory and computation of electromagnetic fields. Wiley, Hoboken, NJ

    Book  Google Scholar 

  35. Carrier G, Krook M, Pearson C (1966) Functions of a complex variable. McGraw Hill, New York

    MATH  Google Scholar 

  36. Baum CE, Pearson LW (1981) On the convergence and numerical sensitivity of the SEM pole-series in early-time scattering response. Electromagnetics 1(2):209–228

    Article  Google Scholar 

  37. Heyman E, Felsen LB (1985) A wavefront interpretation of the singularity expansion method. IEEE Trans Antennas Propag 37(7):706–718

    Article  Google Scholar 

  38. Felsen LB (1984) Progressive and oscillatory waves for hybrid synthesis of source excited propagation and diffraction. IEEE Trans Antennas Propag 32:775–796

    Article  MATH  MathSciNet  Google Scholar 

  39. Heyman E, Felsen LB (1982) Creeping waves and resonances in transient scattering by smooth convex objects. IEEE Trans Antennas Propag 31:426–437

    Article  MathSciNet  Google Scholar 

  40. Altes RA (1976) Sonar for generalized target description and its similarity to animal echolocation systems. J Acoust Soc Am 59:97–106

    Article  Google Scholar 

  41. Li L, Tan AE, Jhamb K, Rambabu K (2013) Characteristics of ultra-wideband pulse scattered from metal planar objects. IEEE Trans Antennas Propag 61(6):3197–3206

    Article  Google Scholar 

  42. Tesche FM (1973) On the analysis of scattering and antenna problems using the singularity expansion technique. IEEE Trans Antennas Propag 21(1):53–62

    Article  Google Scholar 

  43. Chen-To Chai (1994) Dyadic green function in electromagnetic theory. IEEE press series on electromagnetic waves. IEEE Press, New York

    Google Scholar 

  44. Rahmat-samii Y (1975) On the question of computation of the Dyadic Green’s function at the source region in waveguides and cavities. Trans Microw Theory Tech 23(9):762–765

    Article  Google Scholar 

  45. Baum CE (1975) On the Eigenmode expansion method for electromagnetic scattering and antenna problems, part 1: some basic relations for Eigenmode expansion, and their relation to the singularity expansion. Interaction Note 229, Air Force Weapons Lab., pp 1–94

    Google Scholar 

  46. Harrington RF (2001) Time-harmonic electromagnetic fields. Wiley-IEEE press, New York

    Book  Google Scholar 

  47. Garbacz RJ, Turpin RH (1971) A generalized expansion for radiation and scattered fields. IEEE Trans Antennas Propag 19(1):348–358

    Article  Google Scholar 

  48. Harrington RF, Mautz JR (1971) Theory of characteristic modes for conducting bodies. IEEE Trans Antennas Propag 19(5):622–628

    Article  Google Scholar 

  49. Cabedo-Fabres M, Antonino-Daviu E, Valero-Nogueira A, Bataller MF (2007) The theory of characteristic modes revisited: a contribution to the design of antenna for modern applications. IEEE Antennas Propag Mag 49(5):52–68

    Article  Google Scholar 

  50. Liu D, Garbacz PJ, Pozar DM (1990) Antenna synthesis and optimization using generalized characteristic modes. IEEE Trans Antennas Propag 38(6):862–868

    Article  Google Scholar 

  51. Capek M, Hazdra P, Eicher J (2012) A method for the evaluation of radiation Q based on modal approach. IEEE Trans Antennas Propag 60(10):4556–4567

    Article  Google Scholar 

  52. Rezaiesarlak R, Manteghi M (2014) On the application of characteristic modes for the design of chipless RFID tags. APS/URSI 2014, Memphis, TN

    Google Scholar 

  53. Harrington RF, Mautz JR (1972) Control of radar scattering by reactive loading. IEEE Trans Antennas Propag 20(4):446–454

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Rezaiesarlak, R., Manteghi, M. (2015). Mathematical Representation of Scattered Fields from Chipless RFID Tags. In: Chipless RFID. Springer, Cham. https://doi.org/10.1007/978-3-319-10169-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-10169-9_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-10168-2

  • Online ISBN: 978-3-319-10169-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics