Advertisement

Quasistatic Problems

  • Anca Capatina
Chapter
Part of the Advances in Mechanics and Mathematics book series (AMMA, volume 31)

Abstract

This chapter deals with the study of quasistatic contact problems with a nonlocal Coulomb friction law. We first consider that the unilateral contact is modeled by the Signorini conditions. In this case, a variational formulation involves two inequalities with the simultaneous presence of the displacement field and of the velocity field. An existence result is provided and convergence results, for a space finite element approximation and an implicit time discretization scheme of this problem, are proved. Next, we study a boundary control problem related to a quasistatic bilateral contact problem with nonlocal Coulomb friction.

References

  1. 1.
    Amassad, A.: Problèmes elasto-visco-plastiques avec frottement. Thèse, Perpignan (1997)Google Scholar
  2. 2.
    Amassad, A., Chenais, D., Fabre, C.: Optimal control of an elstic problem involving Tresca friction law. Nonlinear Anal. 48, 1107–1135 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Andersson, L.E.: A quasistatic frictional problem with normal compliance. Nonlinear Anal. Theory Methods Appl. 16, 347–369 (1991)CrossRefzbMATHGoogle Scholar
  4. 4.
    Andersson, L.E.: Existence results for quasistatic contact problems with Coulomb friction. Appl. Math. Optim. 42, 169–202 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Capatina, A., Cocou, M., Raous, M.: A class of implicit variational inequalities and applications to frictional contact. Math. Methods Appl. Sci. 32, 1804–1827 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Capatina, A., Timofte, C.: Boundary optimal control for quasistatic bilateral frictional contact problems. Nonlinear Anal. Theory Methods Appl. 94, 84–99 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Cocu, M., Pratt, E., Raous, M.: Formulation and approximation of quasistatic frictional contact. Int. J. Eng. Sci. 34, 783–798 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Cocu, M., Rocca, R.: Existence results for unilateral quasistatic contact problems with friction and adhesion. Math. Model. Numer. Anal. 34, 981–1001 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Klarbring, A., Mikelić, A., Shillor, M.: A global existence result for the quasistatic frictional contact problem with normal compliance. In: del Piero, G., Maceri, F. (eds.) Unilateral Problems in Structural Analysis, vol. 4, pp. 85–111. Birkhäuser, Boston (1991)CrossRefGoogle Scholar
  10. 10.
    Licht, C., Pratt, E., Raous, M.: Remarks on a numerical method for unilateral contact including friction. Int. Series Num. Math. vol. 101, 129–144 (1991)MathSciNetGoogle Scholar
  11. 11.
    Lions, J.L.: Contrôle des Systèmes Distribués Singulières. Dunod, Paris (1983)Google Scholar
  12. 12.
    Oden, J.T., Martins, A.C.: Models and computational methods for dynamic friction phenomena. Comput. Methods Appl. Mech. Eng. 50, 527–634 (1985)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Raous, M.: Quasistatic Signorini problem with Coulomb friction and coupling to adhesion. In: Wriggers, P., Panagiotopoulos, P. (eds.) New Developments in Contact Problems. CISM Courses and Lectures, vol. 384, pp. 101–178. Springer, Wien (1999)CrossRefGoogle Scholar
  14. 14.
    Rocca, R.: Existence of a solution for a quasistatic problem of unilateral contact with local friction. C. R. Acad. Sci. Paris 328, 1253–1258 (1996)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Shillor, M., Sofonea, M.: A quasistatic viscoelastic contact problem with friction. Int. J. Eng. Sci. 38, 1517–1533 (2001)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Shillor, M., Sofonea, M., Telega, J.J.: Models and Analysis of Quasistatic Contact: Variational Methods. Lecture Notes in Physics, vol. 655. Springer, Berlin/Heidelberg (2004)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Anca Capatina
    • 1
  1. 1.Institute of Mathematics “Simion Stoilow” of the Romanian AcademyBucharestRomania

Personalised recommendations