Advertisement

Static Problems

  • Anca Capatina
Chapter
Part of the Advances in Mechanics and Mathematics book series (AMMA, volume 31)

Abstract

In this chapter we study, in an almost exhaustive way, a contact problem with friction which models the contact between an elastic body and a rigid foundation. The contact is modeled upon the well-known Signorini conditions and the friction is described by a nonlocal Coulomb friction law. The classical formulation of the model is described, and a variational formulation of the problem is derived. Under appropriate assumptions on the data, existence, uniqueness and regularity results are provided. We also derive two dual formulations of this problem. Numerical analysis is carried out and convergence results are proved. Finally, a related optimal control problem is studied.

References

  1. 1.
    Abergel, F., Casas, E.: Some optimal control problems of multistate equations appearing in fluid mechanics. Math. Model. Numer. Anal. 27, 223–247 (1993)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Abergel, F., Temam, R.: On some control problems in fluid mechanics. Theor. Comput. Fluid Dyn. 1, 303–325 (1990)CrossRefzbMATHGoogle Scholar
  3. 3.
    Amontons, G.: De la résistence causée dans les machines, tant par les frottements des parties qui les composent que par la raideur des cordes qu’on emploie et la manière de calculer l’un et l’autre. Mémoires de l’Académie Royale des Sciences, Paris (1699)Google Scholar
  4. 4.
    Andersson, L.E.: A quasistatic frictional problem with normal compliance. Nonlinear Anal. Theory Methods Appl. 16, 347–369 (1991)CrossRefzbMATHGoogle Scholar
  5. 5.
    Babuska, I., Azis, A.K.: The Mathematical Foundations of the Finite-element Methods with Applications to Partial Differential Equations. Academic, New York (1972)Google Scholar
  6. 6.
    Barbu, V.: Optimal Control of Variational Inequalities. Research Notes in Mathematics, vol. 100, Pitman, London-Boston (1984)Google Scholar
  7. 7.
    Barbu, V., Tiba, D.: In: Amouroux, M., Jai, A.E. (eds.) Optimal Control of Abstract Variational Inequalities. Pergamon Press, Oxford (1990)Google Scholar
  8. 8.
    Bermudez, A., Saguez, C.: Optimal control of a Signorini problem. SIAM J. Control Optim. 25, 576–582 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Bisegna, P., Lebon, F., Maceri, F.: D-PANA: A convergent block-relaxation solution method for the discretized dual formulation of the Signorini-Coulomb contact problem. C.R. Math. Acad. Sci. Paris 333, 1053–1058 (2001)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Bisegna, P., Lebon, F., Maceri, F.: Relaxation procedures for solving Signorini-Coulomb contact problems. Adv. Eng. Softw. 35, 595–600 (2004)CrossRefzbMATHGoogle Scholar
  11. 11.
    Brézis, H.: Équations et inéquations non linéaires dans les espaces vectoriels en dualité. Ann. Inst. Fourier Grenoble 18, 115–175 (1968)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Browder, F.: Problème Non Linéaires. Université de Montréal (1964)Google Scholar
  13. 13.
    Capatina, A.: Optimal control of Signorini contact problem. Numer. Funct. Anal. Optim. 21, 817–828 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Capatina, A., Lebon, F.: Remarks on the equilibrium finite element method for frictional contact problems. In: Mihailescu-Suliciu, M. (ed.) New Trends in Continuum Mechanics, The Theta Foundation, Conference Proceedings, Constanta, 2003, pp. 25–33 (2005)MathSciNetGoogle Scholar
  15. 15.
    Capatina, A., Stavre, R.: Optimal control of a non-isothermal Navier-Stokes flow. Int. J. Eng. Sci. 34, 59–66 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North-Holland, New York (1976)Google Scholar
  17. 17.
    Cocu, M.: Existence of solutions of Signorini problems with friction. Int. J. Eng. Sci. 22, 567–575 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Cocu, M., Radoslovescu (Capatina), A.: Regularity properties for the solutions of a class of variational inequalities. J. Nonlinear Anal. 11, 221–230 (1987)Google Scholar
  19. 19.
    Coulomb, C.A.: Théorie des machines simples, en ayant égard au frottement de leurs parties et á la raideur des cordages. Mémoires de mathématique et de physique de l’Académie Royale, Paris, pp. 161–342 (1785)Google Scholar
  20. 20.
    Demkowicz, L., Oden, J.T.: On some existence and uniqueness results in contact problems with nonlocal friction. Nonlinear Anal. Theory Methods Appl. 6, 1075–1093 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Drabla, S., Sofonea, M.: Analysis of a Signorini problem with friction. IMA J. Appl. Math. 63, 113–130 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Duvaut, G.: Equilibre d’un solide élastique avec contact unilatéral et frottement de Coulomb. C. R. Acad. Sci. Paris 290, 263–265 (1980)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Duvaut, G., Lions, J.L.: Les Inéquations en Mécanique et Physique. Dunod, Paris (1972)zbMATHGoogle Scholar
  24. 24.
    Fichera, G.: Boundary value problems of elasticity with unilateral constraints. In: Flugge, S. (ed.) Encyclopedia of Physics, vol. VI, pp. 391–424. Springer, Berlin (1972)Google Scholar
  25. 25.
    Veubeke, B.F.: Displacement and equilibrium models in the finite element method. In: Zienkiewicz, O.C., Holister, G.S. (eds.) Stress Analysis, pp. 145–197. Wiley, New York (1965)Google Scholar
  26. 26.
    Friedman, A.: Optimal control for variational inequalities. SIAM J. Control Optim. 24, 439–451 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Friedrichs, K.: On the boundary-value problem of the theory of elasticity and Korn’s inequality. Ann. Math. 48, 441–471 (1947)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Hartman, P., Stampacchia, G.: On some nonlinear elliptic differential equations. Acta. Math. 115, 271–310 (1966)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Haslinger, J., Tvrdy, M.: Approximation and numerical solution of contact problems with friction. Appl. Math. 28, 55–71 (1983)MathSciNetzbMATHGoogle Scholar
  30. 30.
    Jarusĕk, J.: Contact problems with bounded friction coercive case. Czechoslov. Math. J. 33, 237–261 (1983)Google Scholar
  31. 31.
    Johnson, C., Mercier, B.: Some equilibrium finite element methods for two-dimensional elasticity problems. Numer. Math. 30, 103–116 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Klarbring, A., Mikelic̆, A., Shillor, M.: Frictional contact problems with normal compliance. Int. J. Eng. Sci. 26, 811–832 (1988)Google Scholar
  33. 33.
    Klarbring, A., Mikelic̆, A., Shillor, M.: On friction problems with normal compliance. Nonlinear Anal. Theory Methods Appl. 13, 935–955 (1989)Google Scholar
  34. 34.
    Lions, J.L.: Contrôle Optimal de Systèmes Gouvernés par des Équations aux Dérivées Partielles. Dunod, Gauthiers-Villars, Paris (1968)zbMATHGoogle Scholar
  35. 35.
    Lions, J.L.: Contrôle des Systèmes Distribués Singulières. Dunod, Paris (1983)Google Scholar
  36. 36.
    Martins, J.A.C., Oden, J.T.: Existence and uniqueness results for dynamic contact problems with nonlinear normal friction and interface laws. Nonlinear Anal. Theory Methods Appl. 11, 407–428 (1987)MathSciNetCrossRefGoogle Scholar
  37. 37.
    Matei, A., Micu, S.: Boundary optimal control for nonlinear antiplane problems. Nonlinear Anal. Theory Methods Appl. 74, 1641–1652 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Mignot, F.: Contrôle dans les inéquations variationnelles elliptiques. J. Funct. Anal. 22, 130–185 (1976)MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Mignot, F., Puel, J.P.: Optimal control in some variational inequalities. SIAM J. Control Optim. 22, 466–476 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Mosco, U.: Implicit variational problems and quasi-variational inequalities. Lect. Notes Math. 543, 83–156 (1975)CrossRefGoogle Scholar
  41. 41.
    Nec̆as, J., Jarusĕk, J., Haslinger, J.: On the solution of the variational inequality to Signorini problem with small friction. Boll. Un. Mat. Ital. B 17, 796–811 (1980)Google Scholar
  42. 42.
    Neittaanmaki, P., Sprekels, J., Tiba, D.: Optimization of Elliptic Systems: Theory and Applications. Springer Monographs in Mathematics. Springer, New York (2006)Google Scholar
  43. 43.
    Neittaanmaki, P., Tiba, D.: Optimal Control of Nonlinear Parabolic Systems: Theory, Algorithms and Applications, vol. 179, Marcel Dekker, New York (1994)Google Scholar
  44. 44.
    Oden, J.T., Kikuchi, N.: Theory of variational inequalities with applications to problems of flow through porous media. Int. J. Eng. Sci. 18, 1171–1284 (1980)MathSciNetCrossRefGoogle Scholar
  45. 45.
    Oden, J.T., Martins, A.C.: Models and computational methods for dynamic friction phenomena. Comput. Methods Appl. Mech. Eng. 50, 527–634 (1985)MathSciNetCrossRefGoogle Scholar
  46. 46.
    Oden, J.T., Pires, E.: Contact problems in elastostatic with non-local friction laws. TICOM Report 81–82, Austin, TX (1981)Google Scholar
  47. 47.
    Oden, J.T., Pires, E.: Contact problems in elastostatics with non-local friction law. J. Appl. Mech. 50, 67–76 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  48. 48.
    Radoslovescu Capatina, A., Cocu, M.: Internal approximation of quasi-variational inequalities. Numer. Math. 59, 385–398 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  49. 49.
    Raous, M., Sage, M.: Numerical simulation of the behaviour of surface asperities for metal forming. In: Chenot, J.L., Wood, R.D., Zienkiewicz, O.C. (eds.) Numerical Methods in Industries Forming Processes. Balkema, Rotterdam (1992)Google Scholar
  50. 50.
    Rockafellar, R.T.: Monotone operators and the proximal point algorithm. SIAM J. Control Optim. 14, 877–898 (1976)MathSciNetCrossRefzbMATHGoogle Scholar
  51. 51.
    Signorini, A.: Sopra alcune questioni di statica dei sistemi nontinui. Ann. Sc. Norm. Super. Pisa 2, 231–251 (1933)MathSciNetzbMATHGoogle Scholar
  52. 52.
    Signorini, A.: Questioni di elasticita non linearizzata e semi-linearizzata. Rend. Mat. Appl. 18, 95–139 (1959)MathSciNetzbMATHGoogle Scholar
  53. 53.
    Sofonea, M., Tiba, D.: The control variational method for elastic contact problems. Ann. AOSR Ser. Math. Appl. 2, 99–122 (2010)MathSciNetzbMATHGoogle Scholar
  54. 54.
    Sprekels, J., Tiba, D.: The control variational approach for differential systems. SIAM J. Control Optim. 47, 3220–3236 (2008)MathSciNetCrossRefGoogle Scholar
  55. 55.
    Stampacchia, G.: Variational inequalities: theory and application of monotone operators. In: Proceedings of a NATO Advanced Study Institute Venice (1968)Google Scholar
  56. 56.
    Telega, J.J.: Topics on unilateral contact problems of elasticity and inelasticity. In: Moreau, J.J., Panagiotopoulos, P.D. (eds.) Nonsmooth Mechanics and Applications. CSIM Lecture Notes, vol. 302, pp. 341–462. Springer, Wien/New York (1988)CrossRefGoogle Scholar
  57. 57.
    Telega, J.J.: Quasi-static Signorini’s contact problem with friction and duality. Int. Ser. Numer. Math. 101, 199–214 (1991)MathSciNetGoogle Scholar
  58. 58.
    Tiba, D.: Lectures on the optimal control of elliptic equations. In: The 5th International Summer School Jyvaskyla (1995)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Anca Capatina
    • 1
  1. 1.Institute of Mathematics “Simion Stoilow” of the Romanian AcademyBucharestRomania

Personalised recommendations