Advertisement

Dual Formulations of Quasi-Variational Inequalities

  • Anca Capatina
Chapter
Part of the Advances in Mechanics and Mathematics book series (AMMA, volume 31)

Abstract

The aim of this chapter is to derive dual formulations for quasi-variational inequalities. First, we present a brief background on convex analysis and, then, we recall the main ideas of the Mosco, Capuzzo-Dolcetta, and Matzeu duality theory in its form adapted for implicit variational inequalities.

Keywords

Variational Inequality Dual Problem Duality Theory Lagrangian Function Topological Vector Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Barbu, V., Precupanu T.: Convexity and Optimization in Banach Spaces. D. Reidel, Dordrecht (1986)zbMATHGoogle Scholar
  2. 2.
    Capatina, A., Lebon, F.: Remarks on the equilibrium finite element method for frictional contact problems. In: Mihailescu-Suliciu, M., (ed.) New Trends in Continuum Mechanics, The Theta Foundation, Conference proceedings, Constanta, 2003, pp. 25–33 (2005)MathSciNetGoogle Scholar
  3. 3.
    Capuzzo-Dolcetta, I., Matzeu, M.: Duality for implicit variational problems and numerical applications. Numer. Funct. Anal. Optim. 2, 231–265 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Céa, J.: Optimisation, Théorie et Algorithmes. Dunod, Paris (1971)zbMATHGoogle Scholar
  5. 5.
    Ekeland, I., Temam, R.: Analyse Convexe et Problèmes Variationnells. Dunod/Gauthier-Villars, Paris (1974)Google Scholar
  6. 6.
    Fenchel, W.: On conjugate convex functions. Canad. J. Math. 1, 73–77 (1949)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Fan, K.: Minimax theorems. Proc. Natl. Acad. Sci. USA 39, 42–47 (1953)CrossRefzbMATHGoogle Scholar
  8. 8.
    Laurent, P.J.: Approximation et Optimisation. Hermann, Paris (1972)zbMATHGoogle Scholar
  9. 9.
    Moreau, J.J.: Proximité et dualité dans un espace hilbertien. Bull. Soc. Math. France 93, 273–299 (1965)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Moreau, J.J.: Fonctionnelles convexes. Sém. sur les équations aux dérivées partielles, Collége de France (1967)Google Scholar
  11. 11.
    Rockafellar, R.T.: Convex functions and duality in optimization problems and dynamics. Lecture Notes in Operation Research and Mathematical Economics 11/12, pp. 117–141, Springer, Berlin (1969)Google Scholar
  12. 12.
    Rockafellar, R.T.: Convex Analysis. Princeton Landmarks in Mathematics and Physics series (1997)Google Scholar
  13. 13.
    Sion, M.: On general minimax theorems. Pac. J. Math. 8, 171–176 (1958)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Telega, J.J.: Topics on unilateral contact problems of elasticity and inelasticity. In: Moreau, J.J., Panagiotopoulos P.D., (eds.) Nonsmooth Mechanics and Applications; CSIM Lect. Notes, vol. 302, pp. 341–462, Springer, Wien-New York (1988)Google Scholar
  15. 15.
    Telega, J.J.: Quasi-static Signorini’s contact problem with friction and duality. Int. Ser. Numer. Math. 101, 199–214 (1991)MathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Anca Capatina
    • 1
  1. 1.Institute of Mathematics “Simion Stoilow” of the Romanian AcademyBucharestRomania

Personalised recommendations