Spaces of Vector-Valued Functions

  • Anca Capatina
Part of the Advances in Mechanics and Mathematics book series (AMMA, volume 31)


In this chapter we will introduce additional tools which are fundamentals for the study of evolutionary problems studied later in this book. We consider here spaces of functions defined on a time interval \(I \subset \mathbb{R}\) with values into a Banach or Hilbert space X. The results are presented without proofs and for details we refer to the bibliography.


Hilbert Space Banach Space Equivalence Class Cell Complex Additional Tool 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Barbu, V.: Nonlinear Semigroups and Differential Equations in Banach Space. Noordhoff International Publishing, Leyden (1976)Google Scholar
  2. 2.
    Barbu, V.: Partial Differential Equations and Boundary Value Problems. Kluwer Academic, Dordrecht (1998)Google Scholar
  3. 3.
    Brézis, H.: Analyse Fonctionnelle. Mason, Paris (1983)Google Scholar
  4. 4.
    Cazenave, T., Haraux, A.: Introduction aux Problèmes Sémi-linéaires. Mathématiques et Applications. Ellipses, Paris (1990)Google Scholar
  5. 5.
    Dunford, L., Schwartz, L.: Linear Operators, Part I. Interscience, New York (1958)Google Scholar
  6. 6.
    Dunford, L., Schwartz, L.: Linear Operators, Part II. Interscience, London (1963)Google Scholar
  7. 7.
    Han, W., Sofonea, M.: Quasistatic contact problems in viscoelasticity and viscoplasticity. In: AMS/IP Studies in Advanced Mathematics, vol. 30. American Mathematical Society, Providence (2002)Google Scholar
  8. 8.
    Schwartz, L.: Théorie des Distributions à Valeurs Vectorielles I. Ann. Inst. Fourier VII, 1–141 (1958)Google Scholar
  9. 9.
    Yosida, K.: Functional Analysis. Springer, Berlin/Gottingen/Heidelberg (1965)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Anca Capatina
    • 1
  1. 1.Institute of Mathematics “Simion Stoilow” of the Romanian AcademyBucharestRomania

Personalised recommendations