Spaces of Real-Valued Functions

  • Anca Capatina
Part of the Advances in Mechanics and Mathematics book series (AMMA, volume 31)


This chapter is a brief background on spaces of continuous functions and some Sobolev spaces including basic properties, embedding theorems and trace theorems. We recall some classical definitions and theorems of functional analysis which will be used throughout this work. These results are standard and so they are stated without proofs; details and proofs can be found in to many references. We only deal with real valued functions. We assume that the reader is familiar with the basic concepts of general topology and functional analysis.


Hilbert Space Banach Space Sobolev Space Fractional Order Dual Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Adams, R.A.: Sobolev Spaces. Academic, New York/San Francisco/London (1975)zbMATHGoogle Scholar
  2. 2.
    Aubin, J.P.: Approximation of Elliptic Boundary-value Problems. Willey-Interscience, New York (1972)zbMATHGoogle Scholar
  3. 3.
    Barbu, V.: Nonlinear Semigroups and Differential Equations in Banach Space. Noordhoff International Publishing, Leyden (1976)CrossRefGoogle Scholar
  4. 4.
    Barbu, V.: Partial Differential Equations and Boundary Value Problems. Kluwer Academic, Dordrecht (1998)CrossRefzbMATHGoogle Scholar
  5. 5.
    Brézis, H.: Analyse Fonctionnelle. Mason, Paris (1983)zbMATHGoogle Scholar
  6. 6.
    Dunford, L., Schwartz, L.: Linear Operators, Part I. Interscience, New York (1958)zbMATHGoogle Scholar
  7. 7.
    Dunford, L., Schwartz, L.: Linear Operators, Part II. Interscience, London (1963)zbMATHGoogle Scholar
  8. 8.
    Duvaut, G., Lions, J.L.: Les Inéquations en Mécanique et Physique. Dunod, Paris (1972)zbMATHGoogle Scholar
  9. 9.
    Lions, J.L., Magenes, E.: Problèmes aux Limites non Homogènes et Applications. Dunod, Paris (1968)zbMATHGoogle Scholar
  10. 10.
    Oden, J.T., Reddy, J.N.: An Introduction to the Mathematical Theory of Finite Elements. John Wiley & Sons Inc. New York/London/Sydney/Toronto (1976)zbMATHGoogle Scholar
  11. 11.
    Schwartz, L.: Théorie des Distributions. Hermann, Paris (1966)zbMATHGoogle Scholar
  12. 12.
    Sobolev, S.L.: On a theorem of functional analysis. Transl. Am. Math. Soc. 34, 39–68 (1963)zbMATHGoogle Scholar
  13. 13.
    Temam, R.: Problèmes Mathématiques en Plasticité. Méthodes mathématiques de l’informatique. Gautiers-Villars, Montrouge, France (1983)zbMATHGoogle Scholar
  14. 14.
    Yosida, K.: Functional Analysis. Springer, Berlin/Gottingen/Heidelberg (1965)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Anca Capatina
    • 1
  1. 1.Institute of Mathematics “Simion Stoilow” of the Romanian AcademyBucharestRomania

Personalised recommendations