Advertisement

Introduction

  • Anca Capatina
Chapter
Part of the Advances in Mechanics and Mathematics book series (AMMA, volume 31)

Abstract

Nowadays, the expression Variational Inequalities and Contact Problems can be considered as a syntagm since the variational methods have provided one of the most powerful techniques in the study of contact problems and, on the other hand, the variational formulations of the contact problems are, in most cases, variational inequalities.

Keywords

Variational Inequality Contact Problem Dual Formulation Banach Fixed Point Theorem Quasistatic Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Andersson, L.E.: A quasistatic frictional problem with normal compliance. Nonlinear Anal. Theory Methods Appl. 16, 347–369 (1991)CrossRefzbMATHGoogle Scholar
  2. 2.
    Andersson, L.E.: Existence results for quasistatic contact problems with Coulomb friction. Appl. Math. Optim. 42, 169–202 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Brézis, H.: Équations et inéquations non linéaires dans les espaces vectoriels en dualité. Ann. Inst. Fourier Grenoble 18, 115–175 (1968)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Brézis, H.: Problèmes unilatéraux. J. Math. Pures Appl. 51, 1–168 (1972)zbMATHGoogle Scholar
  5. 5.
    Campos, L.T., Oden, J.T., Kikuchi, N.: A numerical analysis of a class of contact problems with friction in elastostatics. Comput. Method Appl. M. 34, 821–845 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Capuzzo-Dolcetta, I., Matzeu, M.: Duality for implicit variational problems and numerical applications. Numer. Funct. Anal. Optim. 2, 231–265 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Cocu, M.: Existence of solutions of Signorini problems with friction. Int. J. Eng. Sci. 22, 567–575 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Cocu, M., Rocca, R.: Existence results for unilateral quasistatic contact problems with friction and adhesion. Math. Model. Numer. Anal. 34, 981–1001 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Cocu, M., Pratt, E., Raous, M.: Formulation and approximation of quasistatic frictional contact. Int. J. Eng. Sci. 34, 783–798 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Demkowicz, L., Oden, J.T.: On some existence and uniqueness results in contact problems with nonlocal friction. Nonlinear Anal. Theory Methods Appl. 6, 1075–1093 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Duvaut, G.: Equilibre d’un solide élastique avec contact unilatéral et frottement de Coulomb. C. R. Acad. Sci. Paris 290, 263–265 (1980)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Duvaut, G., Lions, J.L.: Les Inéquations en Mécanique et Physique. Dunod, Paris (1972)zbMATHGoogle Scholar
  13. 13.
    Eck, C., Jarusek, J., Krbec, M.: Unilateral Contact Problems: Variational Methods and Existence Theorems. Chapman&Hall/CRC Press, Boca Raton (2005)Google Scholar
  14. 14.
    Fichera, G.: Problemi elastostatici con vincoli unilaterali; il problema di Signorini con ambigue condizioni al contoro. Mem. Accad. Naz. dei Lincei 7, 91–140 (1964)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Fichera, G.: Boundary value problems of elasticity with unilateral constraints. In: Flugge, S. (ed.) Encyclopedia of Physics, vol. VI, pp. 391–424. Springer, Berlin (1972)Google Scholar
  16. 16.
    Glowinski, R.: Numerical Methods for Nonlinear Variational Problems. Springer, Berlin/Heidelberg/New York (1984)CrossRefzbMATHGoogle Scholar
  17. 17.
    Glowinski, R., Lions, J.L., Trémolières, R.: Numerical Analysis of Variational Inequalities. North-Holland, Amsterdam (1981)zbMATHGoogle Scholar
  18. 18.
    Han, W., Sofonea, M.: Quasistatic contact problems in viscoelasticity and viscoplasticity. In: AMS/IP Studies in Advanced Mathematics, vol. 30. American Mathematical Society, Providence (2002)Google Scholar
  19. 19.
    Haslinger, J., Hlavác̆ek, I., Nec̆as, J.: Numerical methods for unilateral problems in solid mechanics. In: Ciarlet, P.G., Lions, J.L. (eds.) Handbook of Numerical Analysis, vol. IV, pp. 313–485. North-Holland, Amsterdam (1996)Google Scholar
  20. 20.
    Hlavác̆ek, I., Haslinger, J., Nec̆as, J., Lovis̆ek, J.: Solution of Variational Inequalities in Mechanics. Springer, New York (1988)Google Scholar
  21. 21.
    Kikuchi, N., Oden, J.T.: Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods. SIAM, Philadelphia (1988)CrossRefzbMATHGoogle Scholar
  22. 22.
    Kinderlehrer, D., Stampacchia, G.: An Introduction to Variational Inequalities an Their Applications. Academic, New York (1980)zbMATHGoogle Scholar
  23. 23.
    Klarbring, A., Mikelić, A., Shillor M.: A global existence result for the quasistatic frictional contact problem with normal compliance. In: del Piero, G., Maceri, F. (eds.) Unilateral Problems in Structural Analysis, vol. 4, pp. 85–111. Birkhĺauser, Boston (1991)CrossRefGoogle Scholar
  24. 24.
    Lebon, F., Raous, M.: Multibody contact problems including friction in structure assembly. Comput. Struct. 43, 925–934 (1991)CrossRefGoogle Scholar
  25. 25.
    Lions, J.L.: Quelques Méthodes de Résolution des Problèmes aux Limites non Linéaires. Dunod, Paris (1969)zbMATHGoogle Scholar
  26. 26.
    Lions, J.L., Stampacchia, G.: Variational inequalities. Commun. Pure Appl. Math. 20, 493–519 (1967)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Mosco, U.: An introduction to the approximate solution of variational inequalities. In: CIME Summer Schools 57, G. Geymonat Ed., pp. 497–682 (1971)Google Scholar
  28. 28.
    Mosco, U.: Implicit variational problems and quasi-variational inequalities. Lecture Notes in Mathematis, vol. 543, pp. 83–156. Springer, Berlin (1975)Google Scholar
  29. 29.
    Nec̆as, J., Jarusĕk, J., Haslinger, J.: On the solution of the variational inequality to Signorini problem with small friction. Boll. Un. Mat. Ital. B 17, 796–811 (1980)Google Scholar
  30. 30.
    Niremberg, L.: Remarks on strongly elliptic partial differential equations. Commun. Pure Appl. Math. 8, 648–674 (1955)CrossRefGoogle Scholar
  31. 31.
    Oden, J.T., Pires, E.: Contact problems in elastostatic with non-local friction laws. TICOM Report 81-82, Austin, TX (1981)Google Scholar
  32. 32.
    Oden, J.T., Pires, E.: Contact problems in elastostatics with non-local friction law. J. Appl. Mech. 50, 67–76 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Panagiotopoulos, P.D.: On the unilateral contact problem of structures with a non quadratic strain energy density. Int. J. Solids Struct. 13, 253–261 (1977)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Panagiotopoulos, P.D.: Inequality Problems in Mechanics and Applications: Convex and Nonconvex Energy Functions. Birkhauser, Boston (1985)CrossRefzbMATHGoogle Scholar
  35. 35.
    Raous, M., Chabrand, P., Lebon, F.: Numerical methods for frictional contact problems and application. J. Mec. Theor. Appl 7, 111–128 (1988)MathSciNetzbMATHGoogle Scholar
  36. 36.
    Rocca, R.: Existence of a solution for a quasistatic problem of unilateral contact with local friction. C. R. Acad. Sci. Paris 328, 1253–1258 (1996)MathSciNetCrossRefGoogle Scholar
  37. 37.
    Shillor, M., Sofonea, M., Telega, J.J.: Models and analysis of quasistatic contact: variational methods. Lecture Notes in Physics, vol. 655. Springer, Berlin/Heidelberg (2004)Google Scholar
  38. 38.
    Signorini, A.: Sopra alcune questioni di statica dei sistemi continui. Annali della Scuola Normale Superiore di Pisa 2, 231–251 (1933)MathSciNetzbMATHGoogle Scholar
  39. 39.
    Sofonea, M., Matei, A.: Variational inequalities with applications: a study of antiplane frictional contact problems. Advances in Mechanics, vol. 18. Springer, New York (2009)Google Scholar
  40. 40.
    Sofonea, M., Han, W., Shillor, M.: Analysis and approximations of contact problems with adhesion or damage. Monographs and Textbooks in Pure and Applied Mathematics. Chapman-Halls/CRC Press, New York (2005)CrossRefGoogle Scholar
  41. 41.
    Stampacchia, G.: Formes bilinéaires coercives sur les ensembles convexes. C. R. Acad. Sci. Paris 258, 4413–4416 (1964)MathSciNetzbMATHGoogle Scholar
  42. 42.
    Stampacchia, G.: Variational inequalities: theory and application of monotone operators. In: Proceedings of a NATO Advanced Study Institute, Venice (1968)Google Scholar
  43. 43.
    Telega, J.J.: Topics on unilateral contact problems of elasticity and inelasticity. In: Moreau, J.J., Panagiotopoulos P.D., (eds.) Nonsmooth Mechanics and Applications; CSIM Lecture Notes, vol. 302, pp. 341–462. Springer, Wien/New York (1988)CrossRefGoogle Scholar
  44. 44.
    Ting, T.W.: Elastic-plastic torsion problem III. Arch. Ration. Mech. Anal. 34, 228–244 (1969)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Anca Capatina
    • 1
  1. 1.Institute of Mathematics “Simion Stoilow” of the Romanian AcademyBucharestRomania

Personalised recommendations