Chemical Transformation of Candida albicans

  • Sophie Bachellier-Bassi
  • Christophe d’Enfert
Part of the Fungal Biology book series (FUNGBIO)


Genetic transformation is an essential technique for studying gene function in the yeast Candida albicans. Although less efficient than spheroplasting- or electroporation-techniques, the lithium acetate-based protocol described below is easy to perform, requires basic lab equipment and reliably yields good number of the expected transformants. This method can also be adapted for high-throughput analysis purposes.


Candida albicans Transformation Integration Lithium acetate Heat-shock 



We wish to thank Anne Neville and Mélanie Legrand for critical reading of the manuscript.


  1. Basso L, Bartiss A, Mao Y, Gast C, Coelho P, Snyder M, Wong B (2010) Transformation of Candida albicans with a synthetic hygromycin B resistance gene. Yeast 27:1039–1048PubMedCrossRefGoogle Scholar
  2. Brand A, MacCallum D, Brown A, Gow N, Odds F (2004) Ectopic expression of URA3 can influence the virulence phenotypes and proteome of Candida albicans but can be overcome by targeted reintegration of URA3 at the RPS10 locus. Eukaryot Cell 3:900–909PubMedCrossRefPubMedCentralGoogle Scholar
  3. Cabral V, Chauvel M, Firon A, Legrand M, Nesseir A, Bachellier-Bassi S, Chaudhari Y, Munro C, d’Enfert C (2012) Modular gene over-expression strategies for Candida albicans. Methods Mol Biol 845:227–244PubMedCrossRefGoogle Scholar
  4. Chauvel M, Nesseir A, Cabral V, Znaidi S, Goyard S, Bachellier-Bassi S, Firon A, Legrand M, Diogo D, Naulleau C, Rossignol T, d’Enfert C (2012) A versatile overexpression strategy in the pathogenic yeast Candida albicans: identification of regulators of morphogenesis and fitness. PLoS One 7:e45912PubMedCrossRefPubMedCentralGoogle Scholar
  5. De Backer MD, Maes D, Vandoninck S, Logghe M, Contreras R, Luyten WHML (1999) Transformation of Candida albicans by electroporation. Yeast 15:1609–1618PubMedCrossRefGoogle Scholar
  6. Delorme E (1989) Transformation of Saccharomyces cerevisiae by electroporation. Appl Environ Microbiol 55:2242–2246PubMedPubMedCentralGoogle Scholar
  7. Fonzi WA, Irwin MY (1993) Isogenic strain construction and gene mapping in Candida albicans. Genetics 134:717–728PubMedPubMedCentralGoogle Scholar
  8. Gerami-Nejad M, Zacchi L, McClellan M, Matter K, Berman J (2013) Shuttle vectors for facile gap repair cloning and integration into a neutral locus in Candida albicans. Microbiology 159:569–579CrossRefGoogle Scholar
  9. Gietz R, Schiestl R, Willems A, Woods R (1995) Studies on the transformation of intact yeast cells by the LiAc/SS-DNA/PEG procedure. Yeast 11:355–360PubMedCrossRefGoogle Scholar
  10. Hickman MA, Zeng G, Forche A, Hirakawa MP, Abbey D, Harrison DM, Wang Y-MM, Su C-H, Bennett RJ, Wang Y, Berman J (2013) The ‘obligate diploid’ Candida albicans forms mating-competent haploids. Nature 494:55–59PubMedCrossRefPubMedCentralGoogle Scholar
  11. Ito H, Fukuda Y, Murata K, Kimura A (1983) Transformation of intact yeast cells treated with alkali cations. J Bacteriol 153:163–168PubMedPubMedCentralGoogle Scholar
  12. Kawai S, Pham T, Nguyen H, Nankai H, Utsumi T, Fukuda Y, Murata K (2004) Molecular insights on DNA delivery into Saccharomyces cerevisiae. Biochem Biophys Res Commun 317:100–107PubMedCrossRefGoogle Scholar
  13. Köhler GA, White TC, Agabian N (1997) Overexpression of a cloned IMP dehydrogenase gene of Candida albicans confers resistance to the specific inhibitor mycophenolic acid. J Bacteriol 179:2331–2338PubMedPubMedCentralGoogle Scholar
  14. Kurtz MB, Cortelyou MW, Miller SM, Lai M, Kirsch DR (1987) Development of autonomously replicating plasmids for Candida albicans. Mol Cell Biol 7:209–217PubMedPubMedCentralGoogle Scholar
  15. Mitrikeski PT (2013) Yeast competence for exogenous DNA uptake: towards understanding its genetic component. Antonie Van Leeuwenhoek 103:1181–1207PubMedCrossRefGoogle Scholar
  16. Murad AMA, Lee PR, Broadbent ID, Barelle CJ, Brown AJP (2000) CIp10, an efficient and convenient integrating vector for Candida albicans. Yeast 16:325–327PubMedCrossRefGoogle Scholar
  17. Noble S, Johnson A (2005) Strains and strategies for large-scale gene deletion studies of the diploid human fungal pathogen Candida albicans. Eukaryot Cell 4:298–309PubMedCrossRefPubMedCentralGoogle Scholar
  18. Noble S, Johnson A (2007) Genetics of Candida albicans, a diploid human fungal pathogen. Annu Rev Genet 41:193–211PubMedCrossRefGoogle Scholar
  19. Pham T, Kawai S, Kono E, Murata K (2011) The role of cell wall revealed by the visualization of Saccharomyces cerevisiae transformation. Curr Microbiol 62:956–961PubMedCrossRefGoogle Scholar
  20. Pla J, Pérez-Díaz R, Navarro-García F, Sánchez M, Nombela C (1995) Cloning of the Candida albicans HIS1 gene by direct complementation of a C. albicans histidine auxotroph using an improved double-ARS shuttle vector. Gene 165:115–120PubMedCrossRefGoogle Scholar
  21. Prelich G (2012) Gene overexpression: uses, mechanisms, and interpretation. Genetics 190:841–854PubMedCrossRefPubMedCentralGoogle Scholar
  22. Reuß O, Vik A, Kolter R, Morschhäuser J (2004) The SAT1 flipper, an optimized tool for gene disruption in Candida albicans. Gene 341:119–127PubMedCrossRefGoogle Scholar
  23. Schiestl R, Gietz R (1989) High efficiency transformation of intact yeast cells using single stranded nucleic acids as a carrier. Curr Genet 16:339–346PubMedCrossRefGoogle Scholar
  24. Selmecki A, Bergmann S, Berman J (2005) Comparative genome hybridization reveals widespread aneuploidy in Candida albicans laboratory strains. Mol Microbiol 55:1553–1565PubMedCrossRefGoogle Scholar
  25. Shen J, Guo W, Köhler J (2005) CaNAT1, a heterologous dominant selectable marker for transformation of Candida albicans and other pathogenic Candida species. Infect Immun 73:1239–1242PubMedCrossRefPubMedCentralGoogle Scholar
  26. Staab JF, Sundstrom P (2003) URA3 as a selectable marker for disruption and virulence assessment of Candida albicans genes. Trends Microbiol 11:69–73PubMedCrossRefGoogle Scholar
  27. Thompson JR, Register E, Curotto J, Kurtz M, Kelly R (1998) An improved protocol for the preparation of yeast cells for transformation by electroporation. Yeast 14:565–571PubMedCrossRefGoogle Scholar
  28. Tsuchiya E, Shakuto S, Miyakawa T, Fukui S (1988) Characterization of a DNA uptake reaction through the nuclear membrane of isolated yeast nuclei. J Bacteriol 170:547–551PubMedPubMedCentralGoogle Scholar
  29. Walther A, Wendland J (2003) An improved transformation protocol for the human fungal pathogen Candida albicans. Curr Genet 42:339–343PubMedCrossRefGoogle Scholar
  30. Walther A, Wendland J (2008) PCR-based gene targeting in Candida albicans. Nat Protoc 3:1414–1421PubMedCrossRefGoogle Scholar
  31. Wilson R, Davis D, Mitchell A (1999) Rapid hypothesis testing with Candida albicans through gene disruption with short homology regions. J Bacteriol 181:1868–1874PubMedPubMedCentralGoogle Scholar
  32. Wirsching S, Michel S, Morschhäuser J (2000) Targeted gene disruption in Candida albicans wild-type strains: the role of the MDR1 gene in fluconazole resistance of clinical Candida albicans isolates. Mol Microbiol 36:856–865PubMedCrossRefGoogle Scholar
  33. Zheng H-Z, Liu H-H, Chen S-X, Lu Z-X, Zhang Z-L, Pang D-W, Xie Z-X, Shen P (2005) Yeast transformation process studied by fluorescence labeling technique. Bioconjug Chem 16:250–254PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Sophie Bachellier-Bassi
    • 1
  • Christophe d’Enfert
    • 1
  1. 1.Fungal Biology and Pathogenicity UnitInstitut PasteurParisFrance

Personalised recommendations