Skip to main content

Transformation of Mucor circinelloides f. lusitanicus Protoplasts

  • Chapter
  • First Online:
Genetic Transformation Systems in Fungi, Volume 1

Abstract

Since the first report of a Mucor circinelloides transformation system, many things have been improved by small changes that either simplify the original procedure, or use new technologies. Today, people working on this fungus have alternative methods of transformation that allow them choosing the most suitable one for their purposes. Preparation and manipulation of protoplasts has become a key step to a more efficient transformation procedure for this fungus, which is used as model species in the Mucorales to develop fermentation processes for the production of β-carotene, other carotenoids, and essential oils like gamma-linolenic acid and biodiesel.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anaya N, Roncero MIG (1991) Transformation of a methionine auxotrophic mutant of Mucor circinelloides by direct cloning of the corresponding wild type gene. Mol Gen Genet 230:449–455

    Article  PubMed  CAS  Google Scholar 

  • Benito EP, Díaz-Mínguez JM, Iturriaga EA, Campuzano V, Eslava AP (1992) Cloning and sequence analysis of the Mucor circinelloides pyrG gene encoding orotidine-5′-monophosphate decarboxylase and its use for homologous transformation. Gene 116:59–67

    Article  PubMed  CAS  Google Scholar 

  • Benito EP, Campuzano V, López-Matas MA, De Vicente JI, Eslava AP (1995) Isolation, characterization and transformation, by autonomous replication, of Mucor circinelloides OMPdecase-deficient mutants. Mol Gen Genet 248:126–135

    Article  PubMed  CAS  Google Scholar 

  • Calo S, Nicolás FE, Vila A, Torres-Martínez S, Ruiz-Vázquez RM (2012) Two distinct RNA-dependent RNA polymerases are required for initiation and amplification of RNA silencing in the basal fungus Mucor circinelloides. Mol Microbiol 83:379–394

    Article  PubMed  CAS  Google Scholar 

  • Csernetics A, Nagy G, Iturriaga EA, Szekeres A, Eslava AP, Vágvölgyi C, Papp T (2011) Expression of three isoprenoid biosynthesis genes and their effects on the carotenoid production of the zygomycete Mucor circinelloides. Fungal Genet Biol 48:696–703

    Article  PubMed  CAS  Google Scholar 

  • Díaz-Mínguez JM, López-Matas MA, Eslava AP (1999) Complementary mating types of Mucor circinelloides show electrophoretic karyotype heterogeneity. Curr Genet 36:383–389

    Article  PubMed  Google Scholar 

  • González-Herrnández GA, Herrera-Estrella L, Rocha-Ramírez V, Roncero MIG, Gutiérrez-Corona JF (1997) Biolistic transformation of Mucor circinelloides. Mycol Res 101:953–956

    Article  Google Scholar 

  • Gutiérrez A, López-García S, Garre V (2011) High reliability transformation of the basal fungus Mucor circinelloides by electroporation. J Microbiol Methods 84:442–446

    Article  PubMed  Google Scholar 

  • Harris HA (1948) Heterothallic antibiosis in Mucor racemosus. Mycologia 40:347–351

    Article  PubMed  CAS  Google Scholar 

  • Iturriaga EA, Díaz-Mínguez JM, Benito EP, Alvarez MI, Eslava AP (1992) Heterologous transformation of Mucor circinelloides with the Phycomyces blakesleeanus leu1 gene. Curr Genet 21:215–223

    Article  PubMed  CAS  Google Scholar 

  • Iturriaga EA, Velayos A, Eslava AP, Álvarez MI (2001) The genetics and molecular biology of carotenoid biosynthesis in Mucor. Recent Res Dev Genet 1:79–92

    CAS  Google Scholar 

  • Iturriaga EA, Papp T, Alvarez MI, Eslava AP (2012) Gene fusions for the directed modification of the carotenoid biosynthesis pathway in Mucor circinelloides. In: Barredo JL (ed) Microbial carotenoids from fungi. Humana, Springer, pp 109–122

    Chapter  Google Scholar 

  • Jeniaux A (1966) Chitinases. Methods Enzymol 8:644–650

    Article  Google Scholar 

  • Lasker BA, Borgia PT (1980) High frequency heterokaryon formation by Mucor racemosus. J Bacteriol 141:565–567

    PubMed  CAS  PubMed Central  Google Scholar 

  • Lee SC, Li A, Calo S, Heitman J (2013) Calcineurin plays key roles in the dimorphic transition and virulence of the human pathogenic Zygomycete Mucor circinelloides. PLoS Pathog 9:e1003625

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Nicolás FE, de Haro JP, Torres-Martínez S, Ruiz-Vázquez RM (2007) Mutants defective in a Mucor circinelloides dicer-like gene are not compromised in siRNA silencing but display developmental defects. Fungal Genet Biol 44:504–516

    Article  PubMed  Google Scholar 

  • Nicolás FE, Torres-Martínez S, Ruiz-Vázquez RM (2009) Transcriptional activation increases RNA silencing efficiency and stability in the fungus Mucor circinelloides. J Biotechnol 142:123–126

    Article  PubMed  Google Scholar 

  • Nyilasi I, Ács K, Papp T, Vágvölgyi C (2005) Agrobacterium tumefaciens-mediated transformation of Mucor circinelloides. Folia Microbiol 50:415–420

    Article  CAS  Google Scholar 

  • Ocampo J, Fernández Núñez L, Silva F, Pereyra E, Moreno S, Garre V, Rossi S (2009) A subunit of protein kinase A regulates growth and differentiation in the fungus. Eukaryot Cell 8:933–944

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Ocampo J, McCormack B, Navarro E, Moreno S, Garre V, Rossi S (2012) Protein kinase A regulatory subunit isoforms regulate growth and differentiation in Mucor circinelloides: essential role of PKAR4. Eukaryot Cell 11:989–1002

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Papp T, Velayos A, Bartók T, Eslava AP, Vágvölgyi C, Iturriaga EA (2006) Heterologous expression of astaxanthin biosynthesis genes in Mucor circinelloides. Appl Microbiol Biotechnol 69:526–531

    Article  PubMed  CAS  Google Scholar 

  • Papp T, Csernetics A, Nyilasi I, Ábrók M, Vágvölgyi C (2010) Genetic transformation of Zygomycetes fungi. In: Mahendra R, Kövics G (eds) Progress in mycology. Springer+Business Media B.V., New York, pp 75–94

    Chapter  Google Scholar 

  • Papp T, Csernetics A, Nagy G, Bencsik O, Iturriaga EA, Eslava AP, Vágvölgyi C (2013) Canthaxanthin production with modified Mucor circinelloides strains. Appl Microbiol Biotechnol 97:4937–4950

    Article  PubMed  CAS  Google Scholar 

  • Price JS, Stork R (1975) Production, purification and characterization of an extracellular chitosanase from Streptomyces. J Bacteriol 124:1574

    PubMed  CAS  PubMed Central  Google Scholar 

  • Rodríguez-Frómeta RA, Gutiérrez A, Torres-Martínez S, Garre V (2013) Malic enzyme activity is not the only bottleneck for lipid accumulation in the oleaginous fungus Mucor circinelloides. Appl Microbiol Biotechnol 97:3063–3072

    Article  PubMed  Google Scholar 

  • Rodríguez-Sáiz M, Paz B, de la Fuente JL, López-Nieto MJ, Cabri W, Barredo JL (2004) Genes for carotene biosynthesis from Blakeslea trispora. Appl Environ Microbiol 70:5589–5594

    Article  PubMed  PubMed Central  Google Scholar 

  • Roncero MIG (1984) Enrichment method for the isolation of auxotrophic mutants of Mucor using the polyene antibiotic N-glycosylpolyfungin. Carlsberg Res Commun 49:685–690

    Article  CAS  Google Scholar 

  • Roncero MIG, Jepsen LP, Strøman P, van Heeswijck R (1989) Characterization of a leuA gene and an ARS element from Mucor circinelloides. Gene 84:335–343

    Article  PubMed  CAS  Google Scholar 

  • Schipper MAA (1976) On Mucor circinelloides, Mucor racemosus and related species. Stud Mycol 12:1–40

    Google Scholar 

  • Silva F, Torres-Martínez S, Garre V (2006) Distinct white collar-1 genes control specific light responses in Mucor circinelloides. Mol Microbiol 61:1023–1037

    Article  PubMed  CAS  Google Scholar 

  • Silva F, Navarro E, Peñaranda A, Murcia-Flores L, Torres-Martínez S, Garre V (2008) A RING-Finger protein regulates carotenogenesis via proteolysis-independent ubiquitylation of a White Collar-1-like activator. Mol Microbiol 70:1026–1036

    PubMed  CAS  Google Scholar 

  • Suárez T (1985) Obtención de protoplastos y transformación en Phycomyces blakesleeanus. PhD thesis, University of Salamanca, Salamanca, Spain

    Google Scholar 

  • Torres-Martínez S, Ruiz-Vázquez RM, Garre V, López-García S, Navarro E, Vila A (2012) Molecular tools for carotenogenesis analysis in the zygomycete Mucor circinelloides. Methods Mol Biol 898:85–107

    Article  PubMed  Google Scholar 

  • van Heeswijck R (1986) Autonomous replication of plasmids in Mucor transformants. Carlsberg Res Commun 51:433–443

    Article  Google Scholar 

  • van Heeswijck R, Roncero MIG (1984) High frequency transformation of Mucor with recombinant plasmid DNA. Carlsberg Res Commun 49:691–702

    Article  Google Scholar 

  • Velayos A, Alvarez MI, Eslava AP, Iturriaga EA (1998) Interallelic complementation at the pyrF locus, and the homodimeric nature of orotate phosphoribosyltransferase (OPRTase) in Mucor circinelloides. Mol Gen Genet 260:251–260

    Article  PubMed  CAS  Google Scholar 

  • Velayos A, Blasco JL, Alvarez MI, Iturriaga EA, Eslava AP (2000a) Blue-light regulation of the phytoene dehydrogenase (carB) gene expression in Mucor circinelloides. Planta 210:938–946

    Article  PubMed  CAS  Google Scholar 

  • Velayos A, Eslava AP, Iturriaga EA (2000b) A bifunctional enzyme with lycopene cyclase and phytoene synthase activities is encoded by the carRP gene of Mucor circinelloides. Eur J Biochem 267:5509–5519

    Article  PubMed  CAS  Google Scholar 

  • Wolff AM, Appel KF, Petersen JB, Poulsen U, Arnau J (2002) Identification and analysis of genes involved in the control of dimorphism in Mucor circinelloides (syn. racemosus). FEMS Yeast Res 2:203–213

    PubMed  CAS  Google Scholar 

  • Xia C, Zhang J, Zhang W, Hu B (2011) A new cultivation method for microbial oil production: cell pelletization and lipid accumulation by Mucor circinelloides. Biotechnol Biofuels 4:15

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We want to thank everyone who have played with M. circinelloides during the last 25 years and have established important observations and small-step modifications on the original transformation procedure, which have converted this fungus into a real model organism.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Luis Barredo Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Garre, V., Barredo, J.L., Iturriaga, E.A. (2015). Transformation of Mucor circinelloides f. lusitanicus Protoplasts. In: van den Berg, M., Maruthachalam, K. (eds) Genetic Transformation Systems in Fungi, Volume 1. Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-319-10142-2_4

Download citation

Publish with us

Policies and ethics