Transformation of Mucor circinelloides f. lusitanicus Protoplasts

  • Victoriano Garre
  • José Luis BarredoEmail author
  • Enrique A. Iturriaga
Part of the Fungal Biology book series (FUNGBIO)


Since the first report of a Mucor circinelloides transformation system, many things have been improved by small changes that either simplify the original procedure, or use new technologies. Today, people working on this fungus have alternative methods of transformation that allow them choosing the most suitable one for their purposes. Preparation and manipulation of protoplasts has become a key step to a more efficient transformation procedure for this fungus, which is used as model species in the Mucorales to develop fermentation processes for the production of β-carotene, other carotenoids, and essential oils like gamma-linolenic acid and biodiesel.


Mucor circinelloides Protoplasts Cell-wall lytic enzymes PEG-mediated transformation Electroporation DNA integration 



We want to thank everyone who have played with M. circinelloides during the last 25 years and have established important observations and small-step modifications on the original transformation procedure, which have converted this fungus into a real model organism.


  1. Anaya N, Roncero MIG (1991) Transformation of a methionine auxotrophic mutant of Mucor circinelloides by direct cloning of the corresponding wild type gene. Mol Gen Genet 230:449–455PubMedCrossRefGoogle Scholar
  2. Benito EP, Díaz-Mínguez JM, Iturriaga EA, Campuzano V, Eslava AP (1992) Cloning and sequence analysis of the Mucor circinelloides pyrG gene encoding orotidine-5′-monophosphate decarboxylase and its use for homologous transformation. Gene 116:59–67PubMedCrossRefGoogle Scholar
  3. Benito EP, Campuzano V, López-Matas MA, De Vicente JI, Eslava AP (1995) Isolation, characterization and transformation, by autonomous replication, of Mucor circinelloides OMPdecase-deficient mutants. Mol Gen Genet 248:126–135PubMedCrossRefGoogle Scholar
  4. Calo S, Nicolás FE, Vila A, Torres-Martínez S, Ruiz-Vázquez RM (2012) Two distinct RNA-dependent RNA polymerases are required for initiation and amplification of RNA silencing in the basal fungus Mucor circinelloides. Mol Microbiol 83:379–394PubMedCrossRefGoogle Scholar
  5. Csernetics A, Nagy G, Iturriaga EA, Szekeres A, Eslava AP, Vágvölgyi C, Papp T (2011) Expression of three isoprenoid biosynthesis genes and their effects on the carotenoid production of the zygomycete Mucor circinelloides. Fungal Genet Biol 48:696–703PubMedCrossRefGoogle Scholar
  6. Díaz-Mínguez JM, López-Matas MA, Eslava AP (1999) Complementary mating types of Mucor circinelloides show electrophoretic karyotype heterogeneity. Curr Genet 36:383–389PubMedCrossRefGoogle Scholar
  7. González-Herrnández GA, Herrera-Estrella L, Rocha-Ramírez V, Roncero MIG, Gutiérrez-Corona JF (1997) Biolistic transformation of Mucor circinelloides. Mycol Res 101:953–956CrossRefGoogle Scholar
  8. Gutiérrez A, López-García S, Garre V (2011) High reliability transformation of the basal fungus Mucor circinelloides by electroporation. J Microbiol Methods 84:442–446PubMedCrossRefGoogle Scholar
  9. Harris HA (1948) Heterothallic antibiosis in Mucor racemosus. Mycologia 40:347–351PubMedCrossRefGoogle Scholar
  10. Iturriaga EA, Díaz-Mínguez JM, Benito EP, Alvarez MI, Eslava AP (1992) Heterologous transformation of Mucor circinelloides with the Phycomyces blakesleeanus leu1 gene. Curr Genet 21:215–223PubMedCrossRefGoogle Scholar
  11. Iturriaga EA, Velayos A, Eslava AP, Álvarez MI (2001) The genetics and molecular biology of carotenoid biosynthesis in Mucor. Recent Res Dev Genet 1:79–92Google Scholar
  12. Iturriaga EA, Papp T, Alvarez MI, Eslava AP (2012) Gene fusions for the directed modification of the carotenoid biosynthesis pathway in Mucor circinelloides. In: Barredo JL (ed) Microbial carotenoids from fungi. Humana, Springer, pp 109–122CrossRefGoogle Scholar
  13. Jeniaux A (1966) Chitinases. Methods Enzymol 8:644–650CrossRefGoogle Scholar
  14. Lasker BA, Borgia PT (1980) High frequency heterokaryon formation by Mucor racemosus. J Bacteriol 141:565–567PubMedPubMedCentralGoogle Scholar
  15. Lee SC, Li A, Calo S, Heitman J (2013) Calcineurin plays key roles in the dimorphic transition and virulence of the human pathogenic Zygomycete Mucor circinelloides. PLoS Pathog 9:e1003625PubMedCrossRefPubMedCentralGoogle Scholar
  16. Nicolás FE, de Haro JP, Torres-Martínez S, Ruiz-Vázquez RM (2007) Mutants defective in a Mucor circinelloides dicer-like gene are not compromised in siRNA silencing but display developmental defects. Fungal Genet Biol 44:504–516PubMedCrossRefGoogle Scholar
  17. Nicolás FE, Torres-Martínez S, Ruiz-Vázquez RM (2009) Transcriptional activation increases RNA silencing efficiency and stability in the fungus Mucor circinelloides. J Biotechnol 142:123–126PubMedCrossRefGoogle Scholar
  18. Nyilasi I, Ács K, Papp T, Vágvölgyi C (2005) Agrobacterium tumefaciens-mediated transformation of Mucor circinelloides. Folia Microbiol 50:415–420CrossRefGoogle Scholar
  19. Ocampo J, Fernández Núñez L, Silva F, Pereyra E, Moreno S, Garre V, Rossi S (2009) A subunit of protein kinase A regulates growth and differentiation in the fungus. Eukaryot Cell 8:933–944PubMedCrossRefPubMedCentralGoogle Scholar
  20. Ocampo J, McCormack B, Navarro E, Moreno S, Garre V, Rossi S (2012) Protein kinase A regulatory subunit isoforms regulate growth and differentiation in Mucor circinelloides: essential role of PKAR4. Eukaryot Cell 11:989–1002PubMedCrossRefPubMedCentralGoogle Scholar
  21. Papp T, Velayos A, Bartók T, Eslava AP, Vágvölgyi C, Iturriaga EA (2006) Heterologous expression of astaxanthin biosynthesis genes in Mucor circinelloides. Appl Microbiol Biotechnol 69:526–531PubMedCrossRefGoogle Scholar
  22. Papp T, Csernetics A, Nyilasi I, Ábrók M, Vágvölgyi C (2010) Genetic transformation of Zygomycetes fungi. In: Mahendra R, Kövics G (eds) Progress in mycology. Springer+Business Media B.V., New York, pp 75–94CrossRefGoogle Scholar
  23. Papp T, Csernetics A, Nagy G, Bencsik O, Iturriaga EA, Eslava AP, Vágvölgyi C (2013) Canthaxanthin production with modified Mucor circinelloides strains. Appl Microbiol Biotechnol 97:4937–4950PubMedCrossRefGoogle Scholar
  24. Price JS, Stork R (1975) Production, purification and characterization of an extracellular chitosanase from Streptomyces. J Bacteriol 124:1574PubMedPubMedCentralGoogle Scholar
  25. Rodríguez-Frómeta RA, Gutiérrez A, Torres-Martínez S, Garre V (2013) Malic enzyme activity is not the only bottleneck for lipid accumulation in the oleaginous fungus Mucor circinelloides. Appl Microbiol Biotechnol 97:3063–3072PubMedCrossRefGoogle Scholar
  26. Rodríguez-Sáiz M, Paz B, de la Fuente JL, López-Nieto MJ, Cabri W, Barredo JL (2004) Genes for carotene biosynthesis from Blakeslea trispora. Appl Environ Microbiol 70:5589–5594PubMedCrossRefPubMedCentralGoogle Scholar
  27. Roncero MIG (1984) Enrichment method for the isolation of auxotrophic mutants of Mucor using the polyene antibiotic N-glycosylpolyfungin. Carlsberg Res Commun 49:685–690CrossRefGoogle Scholar
  28. Roncero MIG, Jepsen LP, Strøman P, van Heeswijck R (1989) Characterization of a leuA gene and an ARS element from Mucor circinelloides. Gene 84:335–343PubMedCrossRefGoogle Scholar
  29. Schipper MAA (1976) On Mucor circinelloides, Mucor racemosus and related species. Stud Mycol 12:1–40Google Scholar
  30. Silva F, Torres-Martínez S, Garre V (2006) Distinct white collar-1 genes control specific light responses in Mucor circinelloides. Mol Microbiol 61:1023–1037PubMedCrossRefGoogle Scholar
  31. Silva F, Navarro E, Peñaranda A, Murcia-Flores L, Torres-Martínez S, Garre V (2008) A RING-Finger protein regulates carotenogenesis via proteolysis-independent ubiquitylation of a White Collar-1-like activator. Mol Microbiol 70:1026–1036PubMedGoogle Scholar
  32. Suárez T (1985) Obtención de protoplastos y transformación en Phycomyces blakesleeanus. PhD thesis, University of Salamanca, Salamanca, SpainGoogle Scholar
  33. Torres-Martínez S, Ruiz-Vázquez RM, Garre V, López-García S, Navarro E, Vila A (2012) Molecular tools for carotenogenesis analysis in the zygomycete Mucor circinelloides. Methods Mol Biol 898:85–107PubMedCrossRefGoogle Scholar
  34. van Heeswijck R (1986) Autonomous replication of plasmids in Mucor transformants. Carlsberg Res Commun 51:433–443CrossRefGoogle Scholar
  35. van Heeswijck R, Roncero MIG (1984) High frequency transformation of Mucor with recombinant plasmid DNA. Carlsberg Res Commun 49:691–702CrossRefGoogle Scholar
  36. Velayos A, Alvarez MI, Eslava AP, Iturriaga EA (1998) Interallelic complementation at the pyrF locus, and the homodimeric nature of orotate phosphoribosyltransferase (OPRTase) in Mucor circinelloides. Mol Gen Genet 260:251–260PubMedCrossRefGoogle Scholar
  37. Velayos A, Blasco JL, Alvarez MI, Iturriaga EA, Eslava AP (2000a) Blue-light regulation of the phytoene dehydrogenase (carB) gene expression in Mucor circinelloides. Planta 210:938–946PubMedCrossRefGoogle Scholar
  38. Velayos A, Eslava AP, Iturriaga EA (2000b) A bifunctional enzyme with lycopene cyclase and phytoene synthase activities is encoded by the carRP gene of Mucor circinelloides. Eur J Biochem 267:5509–5519PubMedCrossRefGoogle Scholar
  39. Wolff AM, Appel KF, Petersen JB, Poulsen U, Arnau J (2002) Identification and analysis of genes involved in the control of dimorphism in Mucor circinelloides (syn. racemosus). FEMS Yeast Res 2:203–213PubMedGoogle Scholar
  40. Xia C, Zhang J, Zhang W, Hu B (2011) A new cultivation method for microbial oil production: cell pelletization and lipid accumulation by Mucor circinelloides. Biotechnol Biofuels 4:15PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Victoriano Garre
    • 1
  • José Luis Barredo
    • 2
    Email author
  • Enrique A. Iturriaga
    • 3
  1. 1.Department of Genetics and MicrobiologyUniversity of MurciaMurciaSpain
  2. 2.Department of BiotechnologyGadea BiopharmaLeónSpain
  3. 3.Area de Genética, Departamento de Microbiología y GenéticaUniversidad de SalamancaSalamancaSpain

Personalised recommendations