TALEN-Based Genome Editing in Yeast

  • Ting Li
  • David A. Wright
  • Martin H. Spalding
  • Bing YangEmail author
Part of the Fungal Biology book series (FUNGBIO)


The development of nuclease-mediated Genome Editing represents a significant technological advance and may prove to be as important as PCR and DNA sequencing. Regardless, this technology puts the power of genome re-orchestration into the hands of research scientists for the first time and may lead to a paradigm shift in many biological fields. We present background information, so the reader has a greater understanding for the basis of this technology. We also discuss TAL effector nuclease (TALEN) as the latest engineered nuclease tool, its implementation and uses and present a yeast-based protocol that may be helpful in transitioning this technology to other fungal species.


TAL effector nuclease (TALEN) Zinc finger nuclease Meganuclease Non-homologous end-joining (NHEJ) Homologous recombination (HR) Genetic engineering Gene editing Genome editing 



The work on TALEN technology development and application in the Yang lab and the Spalding lab have been funded by several funding agencies. The authors wish to acknowledge the US National Science Foundation (Award number 1238189 to B.Y. and MCB-0952323 to M.H.S.) and the US Department of Energy’s Advanced Research Projects Agency-Energy Program (DEAR0000010 to M.H.S.) and Office of Science, Basic Energy Science Division. (DE-FG02-12ER16335 to M.H.S.)


  1. Ansai S, Inohaya K, Yoshiura Y, Schartl M, Uemura N, Takahashi R et al (2014) Design, evaluation, and screening methods for efficient targeted mutagenesis with transcription activator-like effector nucleases in medaka. Dev Growth Differ 56(1):98–107PubMedCrossRefGoogle Scholar
  2. Arnau J, Ortiz A, Gomez-Fernández JC, Murillo FJ, Torres-Martínez S (1988) Liposome-protoplast fusion in Phycomyces blakesleeanus. FEMS Microbiol Lett 51(1):37–40CrossRefGoogle Scholar
  3. Bailey AM, Mena GL, Herrera-Estrella L (1993) Transformation of four pathogenic Phytophthora spp by microprojectile bombardment on intact mycelia. Curr Genet 23(1):42–46PubMedCrossRefGoogle Scholar
  4. Boch J, Bonas U (2010) Xanthomonas AvrBs3 family-type III effectors: discovery and function. Annu Rev Phytopathol 48:419–436PubMedCrossRefGoogle Scholar
  5. Boch J, Scholze H, Schornack S, Landgraf A, Hahn S, Kay S et al (2009) Breaking the code of DNA binding specificity of TAL-type III effectors. Science 326(5959):1509–1512PubMedCrossRefGoogle Scholar
  6. Boeke JD, LaCroute F, Fink GR (1984) A positive selection for mutants lacking orotidine-5′-phosphate decarboxylase activity in yeast: 5-fluoro-orotic acid resistance. Mol Gen Genet 197(2):345–346PubMedCrossRefGoogle Scholar
  7. Bogdanove AJ, Schornack S, Lahaye T (2010) TAL effectors: finding plant genes for disease and defense. Curr Opin Plant Biol 13(4):394–401PubMedCrossRefGoogle Scholar
  8. Briggs AW, Rios X, Chari R, Yang L, Zhang F, Mali P et al (2012) Iterative capped assembly: rapid and scalable synthesis of repeat-module DNA such as TAL effectors from individual monomers. Nucleic Acids Res 40(15):e117PubMedCrossRefPubMedCentralGoogle Scholar
  9. Carlson DF, Tan W, Lillico SG, Stverakova D, Proudfoot C, Christian M et al (2012) Efficient TALEN-mediated gene knockout in livestock. Proc Natl Acad Sci U S A 109(43):17382–17387PubMedCrossRefPubMedCentralGoogle Scholar
  10. Cermak T, Doyle EL, Christian M, Wang L, Zhang Y, Schmidt C et al (2011) Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res 39(12):e82PubMedCrossRefPubMedCentralGoogle Scholar
  11. Chen XL, Yang J, Peng YL (2011) Large-scale insertional mutagenesis in Magnaporthe oryzae by Agrobacterium tumefaciens-mediated transformation. Methods Mol Biol 722:213–224PubMedCrossRefGoogle Scholar
  12. Cong L, Zhou R, Kuo YC, Cunniff M, Zhang F (2012) Comprehensive interrogation of natural TALE DNA-binding modules and transcriptional repressor domains. Nat Commun 3:968PubMedCrossRefPubMedCentralGoogle Scholar
  13. Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N et al (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339(6121):819–823PubMedCrossRefPubMedCentralGoogle Scholar
  14. Crocker J, Stern DL (2013) TALE-mediated modulation of transcriptional enhancers in vivo. Nat Methods 10(8):762–767PubMedCrossRefPubMedCentralGoogle Scholar
  15. Dahlem TJ, Hoshijima K, Jurynec MJ, Gunther D, Starker CG, Locke AS et al (2012) Simple methods for generating and detecting locus-specific mutations induced with TALENs in the zebrafish genome. PLoS Genet 8(8):e1002861PubMedCrossRefPubMedCentralGoogle Scholar
  16. DiCarlo JE, Norville JE, Mali P, Rios X, Aach J, Church GM (2013) Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems. Nucleic Acids Res 41(7):4336–4343PubMedCrossRefPubMedCentralGoogle Scholar
  17. Djulic A, Schmid A, Lenz H, Sharma P, Koch C, Wirsel SG et al (2011) Transient transformation of the obligate biotrophic rust fungus Uromyces fabae using biolistics. Fungal Biol 115(7):633–642PubMedCrossRefGoogle Scholar
  18. Doyon Y, Vo TD, Mendel MC, Greenberg SG, Wang J, Xia DF et al (2011) Enhancing zinc-finger-nuclease activity with improved obligate heterodimeric architectures. Nat Methods 8(1):74–79PubMedCrossRefGoogle Scholar
  19. Dujon B (1989) Group I, introns as mobile genetic elements: facts and mechanistic speculations—a review. Gene 82(1):91–114PubMedCrossRefGoogle Scholar
  20. Elliott B, Richardson C, Winderbaum J, Nickoloff JA, Jasin M (1998) Gene conversion tracts from double-strand break repair in mammalian cells. Mol Cell Biol 18(1):93–101PubMedPubMedCentralGoogle Scholar
  21. Gietz RD, Woods RA (2002) Transformation of yeast by lithium acetate/single-stranded carrier DNA/polyethylene glycol method. Methods Enzymol 350:87–96PubMedCrossRefGoogle Scholar
  22. Guo J, Gaj T, Barbas CF 3rd (2010) Directed evolution of an enhanced and highly efficient FokI cleavage domain for zinc finger nucleases. J Mol Biol 400(1):96–107PubMedCrossRefPubMedCentralGoogle Scholar
  23. Gupta A, Hall VL, Kok FO, Shin M, McNulty JC, Lawson ND et al (2013) Targeted chromosomal deletions and inversions in zebrafish. Genome Res 23(6):1008–1017PubMedCrossRefPubMedCentralGoogle Scholar
  24. Herzog RW, Daniell H, Singh NK, Lemke PA (1996) A comparative study on the transformation of Aspergillus nidulans by microprojectile bombardment of conidia and a more conventional procedure using protoplasts treated with polyethyleneglycol. Appl Microbiol Biotechnol 45(3):333–337CrossRefGoogle Scholar
  25. Hinnen A, Hicks JB, Fink GR (1978) Transformation of yeast. Proc Natl Acad Sci U S A 75(4):1929–1933PubMedCrossRefPubMedCentralGoogle Scholar
  26. Hu R, Wallace J, Dahlem TJ, Grunwald DJ, O’Connell RM (2013) Targeting human microRNA genes using engineered Tal-effector nucleases (TALENs). PLoS One 8(5):e63074PubMedCrossRefPubMedCentralGoogle Scholar
  27. Hummel AW, Doyle EL, Bogdanove AJ (2012) Addition of transcription activator-like effector binding sites to a pathogen strain-specific rice bacterial blight resistance gene makes it effective against additional strains and against bacterial leaf streak. New Phytol 195(4):883–893PubMedCrossRefGoogle Scholar
  28. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337(6096):816–821PubMedCrossRefGoogle Scholar
  29. Judelson HS, Tyler BM, Michelmore RW (1991) Transformation of the oomycete pathogen, Phytophthora infestans. Mol Plant Microbe Interact 4(6):602–607PubMedCrossRefGoogle Scholar
  30. Kamoun S (2003) Molecular genetics of pathogenic oomycetes. Eukaryot Cell 2(2):191–199PubMedCrossRefPubMedCentralGoogle Scholar
  31. Kim HJ, Lee HJ, Kim H, Cho SW, Kim JS (2009) Targeted genome editing in human cells with zinc finger nucleases constructed via modular assembly. Genome Res 19(7):1279–1288PubMedCrossRefPubMedCentralGoogle Scholar
  32. Kim Y, Kweon J, Kim A, Chon JK, Yoo JY, Kim HJ et al (2013) A library of TAL effector nucleases spanning the human genome. Nat Biotechnol 31(3):251–258PubMedCrossRefGoogle Scholar
  33. Klug A (2010) The discovery of zinc fingers and their applications in gene regulation and genome manipulation. Annu Rev Biochem 79:213–231PubMedCrossRefGoogle Scholar
  34. Lee CM, Flynn R, Hollywood JA, Scallan MF, Harrison PT (2012) Correction of the DeltaF508 mutation in the cystic fibrosis transmembrane conductance regulator gene by Zinc-Finger Nuclease homology-directed repair. Biores Open Access 1(3):99–108PubMedCrossRefPubMedCentralGoogle Scholar
  35. Li T, Yang B (2013) TAL effector nuclease (TALEN) engineering. Methods Mol Biol 978:63–72PubMedCrossRefGoogle Scholar
  36. Li T, Huang S, Zhao X, Wright DA, Carpenter S, Spalding MH et al (2011) Modularly assembled designer TAL effector nucleases for targeted gene knockout and gene replacement in eukaryotes. Nucleic Acids Res 39(14):6315–6325PubMedCrossRefPubMedCentralGoogle Scholar
  37. Lieber MR (2010) The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annu Rev Biochem 79:181–211PubMedCrossRefPubMedCentralGoogle Scholar
  38. Liu J, Gaj T, Patterson JT, Sirk SJ, Barbas Iii CF (2014) Cell-penetrating peptide-mediated delivery of TALEN proteins via bioconjugation for genome engineering. PLoS One 9(1):e85755PubMedCrossRefPubMedCentralGoogle Scholar
  39. Maeder ML, Linder SJ, Reyon D, Angstman JF, Fu Y, Sander JD et al (2013) Robust, synergistic regulation of human gene expression using TALE activators. Nat Methods 10(3):243–245PubMedCrossRefPubMedCentralGoogle Scholar
  40. Mahfouz MM, Li L, Piatek M, Fang X, Mansour H, Bangarusamy DK et al (2012) Targeted transcriptional repression using a chimeric TALE-SRDX repressor protein. Plant Mol Biol 78(3):311–321PubMedCrossRefPubMedCentralGoogle Scholar
  41. Mak AN, Bradley P, Cernadas RA, Bogdanove AJ, Stoddard BL (2012) The crystal structure of TAL effector PthXo1 bound to its DNA target. Science 335(6069):716–719PubMedCrossRefPubMedCentralGoogle Scholar
  42. Malardier L, Daboussi MJ, Julien J, Roussel F, Scazzocchio C, Brygoo Y (1989) Cloning of the nitrate reductase gene (niaD) of Aspergillus nidulans and its use for transformation of Fusarium oxysporum. Gene 78(1):147–156PubMedCrossRefGoogle Scholar
  43. Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE et al (2013) RNA-guided human genome engineering via Cas9. Science 339(6121):823–826PubMedCrossRefPubMedCentralGoogle Scholar
  44. Miller JC, Holmes MC, Wang J, Guschin DY, Lee YL, Rupniewski I et al (2007) An improved zinc-finger nuclease architecture for highly specific genome editing. Nat Biotechnol 25(7):778–785PubMedCrossRefGoogle Scholar
  45. Miller JC, Tan S, Qiao G, Barlow KA, Wang J, Xia DF et al (2011) A TALE nuclease architecture for efficient genome editing. Nat Biotechnol 29(2):143–148PubMedCrossRefGoogle Scholar
  46. Mort-Bontemps M, Fevre M (1997) Transformation of the oomycete Saprolegnia monoica to hygromycin-B resistance. Curr Genet 31(3):272–275PubMedCrossRefGoogle Scholar
  47. Moscou MJ, Bogdanove AJ (2009) A simple cipher governs DNA recognition by TAL effectors. Science 326(5959):1501PubMedCrossRefGoogle Scholar
  48. Oleykowski CA, Bronson Mullins CR, Godwin AK, Yeung AT (1998) Mutation detection using a novel plant endonuclease. Nucleic Acids Res 26(20):4597–4602PubMedCrossRefPubMedCentralGoogle Scholar
  49. Olmedo-Monfil V, Cortés-Penagos C, Herrera-Estrella A (2004) Three decades of fungal transformation. In: Balbás P, Lorence A (eds) Recombinant gene expression. Methods in molecular biology, vol 267. Humana Press, Totowa, pp 297–313CrossRefGoogle Scholar
  50. Orr-Weaver TL, Szostak JW, Rothstein RJ (1981) Yeast transformation: a model system for the study of recombination. Proc Natl Acad Sci U S A 78(10):6354–6358PubMedCrossRefPubMedCentralGoogle Scholar
  51. Orr-Weaver TL, Szostak JW, Rothstein RJ (1983) Genetic applications of yeast transformation with linear and gapped plasmids. Methods Enzymol 101:228–245PubMedCrossRefGoogle Scholar
  52. Pabo CO, Peisach E, Grant RA (2001) Design and selection of novel Cys2His2 zinc finger proteins. Annu Rev Biochem 70:313–340PubMedCrossRefGoogle Scholar
  53. Partida-Martinez LP, Monajembashi S, Greulich KO, Hertweck C (2007) Endosymbiont-dependent host reproduction maintains bacterial-fungal mutualism. Curr Biol 17(9):773–777PubMedCrossRefGoogle Scholar
  54. Perez-Pinera P, Ousterout DG, Brunger JM, Farin AM, Glass KA, Guilak F et al (2013) Synergistic and tunable human gene activation by combinations of synthetic transcription factors. Nat Methods 10(3):239–242PubMedCrossRefPubMedCentralGoogle Scholar
  55. Piganeau M, Ghezraoui H, De Cian A, Guittat L, Tomishima M, Perrouault L et al (2013) Cancer translocations in human cells induced by zinc finger and TALE nucleases. Genome Res 23(7):1182–1193PubMedCrossRefPubMedCentralGoogle Scholar
  56. Politz MC, Copeland MF, Pfleger BF (2013) Artificial repressors for controlling gene expression in bacteria. Chem Commun (Camb) 49(39):4325–4327CrossRefGoogle Scholar
  57. Porteus MH (2006) Mammalian gene targeting with designed zinc finger nucleases. Mol Ther 13(2):438–446PubMedCrossRefGoogle Scholar
  58. Porteus M (2007) Using homologous recombination to manipulate the genome of human somatic cells. Biotechnol Genet Eng Rev 24:195–212PubMedCrossRefGoogle Scholar
  59. Porteus MH, Baltimore D (2003) Chimeric nucleases stimulate gene targeting in human cells. Science 300(5620):763PubMedCrossRefGoogle Scholar
  60. Pruett-Miller SM, Reading DW, Porter SN, Porteus MH (2009) Attenuation of zinc finger nuclease toxicity by small-molecule regulation of protein levels. PLoS Genet 5(2):e1000376PubMedCrossRefPubMedCentralGoogle Scholar
  61. Puchta H, Dujon B, Hohn B (1993) Homologous recombination in plant cells is enhanced by in vivo induction of double strand breaks into DNA by a site-specific endonuclease. Nucleic Acids Res 21(22):5034–5040PubMedCrossRefPubMedCentralGoogle Scholar
  62. Reyon D, Tsai SQ, Khayter C, Foden JA, Sander JD, Joung JK (2012) FLASH assembly of TALENs for high-throughput genome editing. Nat Biotechnol 30(5):460–465PubMedCrossRefPubMedCentralGoogle Scholar
  63. Robinson M, Sharon A (1999) Transformation of the bioherbicide Colletotrichum gloeosporioides f. sp. Aeschynomene By electroporation of germinated conidia. Curr Genet 36(1–2):98–104PubMedCrossRefGoogle Scholar
  64. Rose M, Winston F (1984) Identification of a Ty insertion within the coding sequence of the S. cerevisiae URA3 gene. Mol Gen Genet 193(3):557–560PubMedCrossRefGoogle Scholar
  65. Rothstein RJ (1983) One-step gene disruption in yeast. Methods Enzymol 101:202–211PubMedCrossRefGoogle Scholar
  66. Rouet P, Smih F, Jasin M (1994) Expression of a site-specific endonuclease stimulates homologous recombination in mammalian cells. Proc Natl Acad Sci U S A 91(13):6064–6068PubMedCrossRefPubMedCentralGoogle Scholar
  67. Ru R, Yao Y, Yu S, Yin B, Xu W, Zhao S et al (2013) Targeted genome engineering in human induced pluripotent stem cells by penetrating TALENs. Cell Regen 2(1):1–8CrossRefGoogle Scholar
  68. Ruiz-Diez B (2002) Strategies for the transformation of filamentous fungi. J Appl Microbiol 92(2):189–195PubMedCrossRefGoogle Scholar
  69. San Filippo J, Sung P, Klein H (2008) Mechanism of eukaryotic homologous recombination. Annu Rev Biochem 77:229–257PubMedCrossRefGoogle Scholar
  70. Sander JD, Joung JK (2014) CRISPR/Cas system for editing, regulating and targeting. Nat Biotechnol 32:347–355PubMedCrossRefPubMedCentralGoogle Scholar
  71. Schaefer DG, Zryd JP (1997) Efficient gene targeting in the moss Physcomitrella patens. Plant J 11(6):1195–1206PubMedCrossRefGoogle Scholar
  72. Schmid-Burgk JL, Schmidt T, Kaiser V, Honing K, Hornung V (2013) A ligation-independent cloning technique for high-throughput assembly of transcription activator-like effector genes. Nat Biotechnol 31(1):76–81PubMedCrossRefPubMedCentralGoogle Scholar
  73. Scholze H, Boch J (2011) TAL effectors are remote controls for gene activation. Curr Opin Microbiol 14(1):47–53PubMedCrossRefGoogle Scholar
  74. Segal DJ, Carroll D (1995) Endonuclease-induced, targeted homologous extrachromosomal recombination in Xenopus oocytes. Proc Natl Acad Sci U S A 92(3):806–810PubMedCrossRefPubMedCentralGoogle Scholar
  75. Sizova I, Greiner A, Awasthi M, Kateriya S, Hegemann P (2013) Nuclear gene targeting in Chlamydomonas using engineered zinc-finger nucleases. Plant J 73(5):873–882PubMedCrossRefGoogle Scholar
  76. Stoddard BL (2011) Homing endonucleases: from microbial genetic invaders to reagents for targeted DNA modification. Structure 19(1):7–15PubMedCrossRefPubMedCentralGoogle Scholar
  77. Szczepek M, Brondani V, Buchel J, Serrano L, Segal DJ, Cathomen T (2007) Structure-based redesign of the dimerization interface reduces the toxicity of zinc-finger nucleases. Nat Biotechnol 25(7):786–793PubMedCrossRefGoogle Scholar
  78. Szostak JW, Orr-Weaver TL, Rothstein RJ, Stahl FW (1983) The double-strand-break repair model for recombination. Cell 33(1):25–35PubMedCrossRefGoogle Scholar
  79. Townsend JA, Wright DA, Winfrey RJ, Fu F, Maeder ML, Joung JK et al (2009) High-frequency modification of plant genes using engineered zinc-finger nucleases. Nature 459(7245):442–445PubMedCrossRefPubMedCentralGoogle Scholar
  80. Umezu K, Amaya T, Yoshimoto A, Tomita K (1971) Purification and properties of orotidine-5′-phosphate pyrophosphorylase and orotidine-5′-phosphate decarboxylase from baker’s yeast. J Biochem 70(2):249–262PubMedGoogle Scholar
  81. Urnov FD, Miller JC, Lee YL, Beausejour CM, Rock JM, Augustus S et al (2005) Highly efficient endogenous human gene correction using designed zinc-finger nucleases. Nature 435(7042):646–651PubMedCrossRefGoogle Scholar
  82. Utermark J, Karlovsky P (2008) Genetic transformation of filamentous fungi by Agrobacterium tumefaciens. Protocol Exchange; doi: 10.1038/nprot.2008.83
  83. Vieira AL, Camilo CM (2011) Agrobacterium tumefaciens—mediated transformation of the aquatic fungus Blastocladiella emersonii. Fungal Genet Biol 48(8):806–811PubMedCrossRefGoogle Scholar
  84. Wei C, Liu J, Yu Z, Zhang B, Gao G, Jiao R (2013) TALEN or Cas9—rapid, efficient and specific choices for genome modifications. J Genet Genomics 40(6):281–289PubMedCrossRefGoogle Scholar
  85. Zhang Y, Zhang F, Li X, Baller JA, Qi Y, Starker CG et al (2013) Transcription activator-like effector nucleases enable efficient plant genome engineering. Plant Physiol 161(1):20–27PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Ting Li
    • 1
  • David A. Wright
    • 1
  • Martin H. Spalding
    • 1
  • Bing Yang
    • 1
    Email author
  1. 1.Department of Genetics, Development and Cell BiologyIowa State UniversityAmesUSA

Personalised recommendations