Advertisement

REMI in Molecular Fungal Biology

  • Aurin M. Vos
  • Luis G. Lugones
  • Han A. B. Wösten
Chapter
Part of the Fungal Biology book series (FUNGBIO)

Abstract

Restriction enzyme mediated integration (REMI) consists of a PEG or electroporation based transformation protocol in the presence of a restriction enzyme. In general, REMI results in increased transformation efficiency and more single locus integrations. This has made REMI a valuable tool for gene tagging and functional genomics in fungi. The mechanism of REMI, its use, and its alternatives are discussed.

Keywords

Fungal transformation Restriction enzyme mediated integration (REMI) Functional genomics Gene tagging Transformation Functional genomics in fungi 

References

  1. Aichinger C, Hansson K, Eichhorn H, Lessing F, Mannhaupt G, Mewes W, Kahmann R (2003) Identification of plant-regulated genes in Ustilago maydis by enhancer-trapping mutagenesis. Mol Genet Genomics 270(4):303–314PubMedGoogle Scholar
  2. Akamatsu H, Itoh Y, Kodama M, Otani H, Kohmoto K (1997) AAL-toxin-deficient mutants of Alternaria alternata tomato pathotype by restriction enzyme-mediated integration. Phytopathology 87(9):967–972PubMedGoogle Scholar
  3. Balhadère PV, Foster AJ, Talbot NJ (1999) Identification of pathogenicity mutants of the rice blast fungus Magnaporthe grisea by insertional mutagenesis. Mol Plant Microbe Interact 12(2):129–142Google Scholar
  4. Blaise F, Rémy E, Meyer M, Zhou L, Narcy J, Roux J, Balesdent M, Rouxel T (2007) A critical assessment of Agrobacterium tumefaciens-mediated transformation as a tool for pathogenicity gene discovery in the phytopathogenic fungus Leptosphaeria maculans. Fungal Genet Biol 44(2):123–138PubMedGoogle Scholar
  5. Bölker M, Böhnert HU, Braun KH, Görl J, Kahmann R (1995) Tagging pathogenicity genes in Ustilago maydis by restriction enzyme-mediated integration (REMI). Mol Gen Genet 248(5):547–552PubMedGoogle Scholar
  6. Bowyer P, Mosquera J, Anderson M, Birch M, Bromley M, Denning DW (2012) Identification of novel genes conferring altered azole susceptibility in Aspergillus fumigatus. FEMS Microbiol Lett 332(1):10–19PubMedGoogle Scholar
  7. Brown DH, Slobodkin IV, Kumamoto CA (1996) Stable transformation and regulated expression of an inducible reporter construct in Candida albicans using restriction enzyme-mediated integration. Mol Gen Genet 251(1):75–80PubMedGoogle Scholar
  8. Brown JS, Aufauvre-Brown A, Holden DW (1998) Insertional mutagenesis of Aspergillus fumigatus. Mol Gen Genet 259(3):327–335PubMedGoogle Scholar
  9. Brown DH Jr, Giusani AD, Chen X, Kumamoto CA (1999) Filamentous growth of Candida albicans in response to physical environmental cues and its regulation by the unique CZF1 gene. Mol Microbiol 34(4):651–662PubMedGoogle Scholar
  10. Bundock P, den Dulk-Ras A, Beijersbergen A, Hooykaas PJ (1995) Trans-kingdom T-DNA transfer from Agrobacterium tumefaciens to Saccharomyces cerevisiae. EMBO J 14(13):3206–3214PubMedPubMedCentralGoogle Scholar
  11. Busch S, Eckert SE, Krappmann S, Braus GH (2003) The COP9 signalosome is an essential regulator of development in the filamentous fungus Aspergillus nidulans. Mol Microbiol 49(3):717–730PubMedGoogle Scholar
  12. Chan CY, Kiechle M, Manivasakam P, Schiestl RH (2007) Ionizing radiation and restriction enzymes induce microhomology-mediated illegitimate recombination in Saccharomyces cerevisiae. Nucleic Acids Res 35(15):5051–5059PubMedPubMedCentralGoogle Scholar
  13. Chen X, Kumamoto CA (2006) A conserved G protein (Drg1p) plays a role in regulation of invasive filamentation in Candida albicans. Microbiology 152(Pt 12):3691–3700PubMedGoogle Scholar
  14. Chen H, Cao L, Dekkers KL, Rollins JA, Ko NJ, Timmer L, Chung K (2005) A gene with domains related to transcription regulation is required for pathogenicity in Colletotrichum acutatum causing Key lime anthracnose. Mol Plant Pathol 6(5):513–525PubMedGoogle Scholar
  15. Cho JY, Jeffries TW (1998) Pichia stipitis genes for alcohol dehydrogenase with fermentative and respiratory functions. Appl Environ Microbiol 64(4):1350–1358PubMedPubMedCentralGoogle Scholar
  16. Choi YE, Brown JA, Williams CB, Canales LL, Shim WB (2008) GAC1, a gene encoding a putative GTPase-activating protein, regulates bikaverin biosynthesis in Fusarium verticillioides. Mycologia 100(5):701–709PubMedGoogle Scholar
  17. Chung K, Shilts T, Li W, Timmer L (2002) Engineering a genetic transformation system for Colletotrichum acutatum, the causal fungus of lime anthracnose and postbloom fruit drop of citrus. FEMS Microbiol Lett 213(1):33–39PubMedGoogle Scholar
  18. Chung K, Ehrenshaft M, Wetzel D, Daub M (2003) Cercosporin-deficient mutants by plasmid tagging in the asexual fungus Cercospora nicotianae. Mol Genet Genomics 270(2):103–113PubMedGoogle Scholar
  19. Ciccia A, Elledge SJ (2010) The DNA damage response: making it safe to play with knives. Mol Cell 40(2):179–204PubMedPubMedCentralGoogle Scholar
  20. Combier J, Melayah D, Raffier C, Pépin R, Marmeisse R, Gay G (2004) Nonmycorrhizal (Myc) mutants of Hebeloma cylindrosporum obtained through insertional mutagenesis. Mol Plant Microbe Interact 17(9):1029–1038PubMedGoogle Scholar
  21. Couto CA, Wang HY, Green JC, Kiely R, Siddaway R, Borer C, Pears CJ, Lakin ND (2011) PARP regulates nonhomologous end joining through retention of Ku at double-strand breaks. J Cell Biol 194(3):367–375PubMedPubMedCentralGoogle Scholar
  22. Cummings WJ, Celerin M, Crodian J, Brunick LK, Zolan ME (1999) Insertional mutagenesis in Coprinus cinereus: use of a dominant selectable marker to generate tagged, sporulation-defective mutants. Curr Genet 36(6):371–382PubMedGoogle Scholar
  23. Daboussi M, Capy P (2003) Transposable elements in filamentous fungi. Annu Rev Microbiol 57(1):275–299PubMedGoogle Scholar
  24. Daley JM, Palmbos PL, Wu D, Wilson TE (2005) Nonhomologous end joining in yeast. Annu Rev Genet 39:431–451PubMedGoogle Scholar
  25. de Bekker C, Bruning O, Jonker MJ, Breit TM, Wosten HA (2011) Single cell transcriptomics of neighboring hyphae of Aspergillus niger. Genome Biol 12(8):R71-2011-12-8-r71Google Scholar
  26. de Groot MJ, Bundock P, Hooykaas PJ, Beijersbergen AG (1998) Agrobacterium tumefaciens-mediated transformation of filamentous fungi. Nat Biotechnol 16(9):839–842PubMedGoogle Scholar
  27. De Guido M, Pollastro S, Carlucci A, Carlucci R, Faretra F (2003) Phomopsis viticola is easily transformed with hph and Bmlr genes. J Plant Pathol 85(1):43–52Google Scholar
  28. De Jong JF, Ohm RA, De Bekker C, Wösten HA, Lugones LG (2010) Inactivation of ku80 in the mushroom‐forming fungus Schizophyllum commune increases the relative incidence of homologous recombination. FEMS Microbiol Lett 310(1):91–95PubMedGoogle Scholar
  29. De Souza C, Goldman MS, Goldman G (2000) Tagging of genes involved in multidrug resistance in Aspergillus nidulans. Mol Gen Genet 263(4):702–711PubMedGoogle Scholar
  30. Deriano L, Roth DB (2013) Modernizing the nonhomologous end-joining repertoire: alternative and classical NHEJ share the stage. Annu Rev Genet 47:433–455PubMedGoogle Scholar
  31. Dmytruk KV, Voronovsky AY, Sibirny AA (2006) Insertion mutagenesis of the yeast Candida famata (Debaryomyces hansenii) by random integration of linear DNA fragments. Curr Genet 50(3):183–191PubMedGoogle Scholar
  32. Dunlap JC, Borkovich KA, Henn MR, Turner GE, Sachs MS, Glass NL, McCluskey K, Plamann M, Galagan JE, Birren BW (2007) Enabling a community to dissect an organism: overview of the Neurospora functional genomics project. Adv Genet 57:49–96PubMedPubMedCentralGoogle Scholar
  33. Epstein L, Lusnak K, Kaur S (1998) Transformation-mediated developmental mutants of Glomerella graminicola (Colletotrichum graminicola). Fungal Genet Biol 23(2):189–203PubMedGoogle Scholar
  34. Farre J, Vidal J, Subramani S (2007) A cytoplasm to vacuole targeting pathway in P. pastoris. Autophagy 3(3):230PubMedGoogle Scholar
  35. Fey P, Cox EC (1997) Gene trapping with GFP: the isolation of developmental mutants in the slime mold Polysphondylium. Curr Biol 7(11):909–912PubMedGoogle Scholar
  36. Fincham JR (1989) Transformation in fungi. Microbiol Rev 53(1):148–170PubMedPubMedCentralGoogle Scholar
  37. Fujimoto D, Shi Y, Christian D, Mantanguihan J, Leung H (2002) Tagging quantitative loci controlling pathogenicity in Magnaporthe grisea by insertional mutagenesis. Physiol Mol Plant Pathol 61(2):77–88Google Scholar
  38. Giaever G, Chu AM, Ni L, Connelly C, Riles L, Veronneau S, Dow S, Lucau-Danila A, Anderson K, Andre B (2002) Functional profiling of the Saccharomyces cerevisiae genome. Nature 418(6896):387–391PubMedGoogle Scholar
  39. Granado JD, Kertesz-Chaloupková K, Aebi M, Kües U (1997) Restriction enzyme-mediated DNA integration in Coprinus cinereus. Mol Gen Genet 256(1):28–36PubMedGoogle Scholar
  40. Han Y, Lee T, Han K, Yun S, Lee Y (2004) Functional analysis of the homoserine O-acetyltransferase gene and its identification as a selectable marker in Gibberella zeae. Curr Genet 46(4):205–212PubMedGoogle Scholar
  41. Hecht SM (2000) Bleomycin: new perspectives on the mechanism of action 1. J Nat Prod 63(1):158–168PubMedGoogle Scholar
  42. Hirano T, Sato T, Yaegashi K, Enei H (2000) Efficient transformation of the edible basidiomycete Lentinus edodes with a vector using a glyceraldehyde-3-phosphate dehydrogenase promoter to hygromycin B resistance. Mol Gen Genet 263(6):1047–1052PubMedGoogle Scholar
  43. Horowitz S, Yarden O, Zveibil A, Freeman S (2004) Development of a robust screening method for pathogenicity of Colletotrichum spp. on strawberry seedlings enabling forward genetic studies. Plant Dis 88(8):845–851Google Scholar
  44. Hsu DW, Kiely R, Couto CA, Wang HY, Hudson JJ, Borer C, Pears CJ, Lakin ND (2011) DNA double-strand break repair pathway choice in Dictyostelium. J Cell Sci 124(Pt 10):1655–1663PubMedGoogle Scholar
  45. Idnurm A, Howlett BJ (2002) Isocitrate lyase is essential for pathogenicity of the fungus Leptosphaeria maculans to canola (Brassica napus). Eukaryot Cell 1(5):719–724PubMedPubMedCentralGoogle Scholar
  46. Idnurm A, Howlett BJ (2003) Analysis of loss of pathogenicity mutants reveals that repeat-induced point mutations can occur in the Dothideomycete Leptosphaeria maculans. Fungal Genet Biol 39(1):31–37PubMedGoogle Scholar
  47. Inada K, Morimoto Y, Arima T, Murata Y, Kamada T (2001) The clp1 gene of the mushroom Coprinus cinereus is essential for A-regulated sexual development. Genetics 157(1):133–140PubMedPubMedCentralGoogle Scholar
  48. Inoue l, Ohara T, Namiki F, Tsuge T (2001) Isolation of pathogenicity mutants of Fusarium oxysporum f. sp. melonis by insertional mutagenesis. J Gen Plant Pathol 67(3):191–199Google Scholar
  49. Irie T, Honda Y, Hirano T, Sato T, Enei H, Watanabe T, Kuwahara M (2001) Stable transformation of Pleurotus ostreatus to hygromycin B resistance using Lentinus edodes GPD expression signals. Appl Microbiol Biotechnol 56(5–6):707–709PubMedGoogle Scholar
  50. Itoh Y, Scott B (1997) Effect of de-phosphorylation of linearized pAN7-1 and of addition of restriction enzyme on plasmid integration in Penicillium paxilli. Curr Genet 32(2):147–151PubMedGoogle Scholar
  51. Jeon J, Park S, Chi M, Choi J, Park J, Rho H, Kim S, Goh J, Yoo S, Choi J (2007) Genome-wide functional analysis of pathogenicity genes in the rice blast fungus. Nat Genet 39(4):561–565PubMedGoogle Scholar
  52. Jiang Q, Ying S, Feng M (2007) Enhanced frequency of Beauveria bassiana blastospore transformation by restriction enzyme-mediated integration and electroporation. J Microbiol Methods 69(3):512–517PubMedGoogle Scholar
  53. Jianping Z, Guifang D, Kai Z, Yongjun Z, Yongliang L, Liuqing Y (2012) Screening and identification of insertion mutants from Bipolaris eleusines by mutagenesis based on restriction enzyme‐mediated integration. FEMS Microbiol Lett 330(2):90–97PubMedGoogle Scholar
  54. Jin X, Ming-He M, Wei Z, Xiao-Wei H, Ke-Qin Z (2005a) Transformation and mutagenesis of the nematode-trapping fungus Monacrosporium sphaeroides by restriction enzyme-mediated integration (REMI). J Microbiol 43(5):417PubMedGoogle Scholar
  55. Jin X, Ming-He M, Xiao-Wei H, Ke-Qin Z (2005b) Improvement on genetic transformation in the nematode-trapping fungus Arthrobotrys oligospora and its quantification on dung samples. Mycopathologia 159(4):533–538PubMedGoogle Scholar
  56. Kahmann R, Basse C (1999) REMI (restriction enzyme mediated integration) and its impact on the isolation of pathogenicity genes in fungi attacking plants. Eur J Plant Pathol 105(3):221–229Google Scholar
  57. Kaufman G, Horwitz BA, Hadar R, Ullmann Y, Berdicevsky I (2004) Green fluorescent protein (GFP) as a vital marker for pathogenic development of the dermatophyte Trichophyton mentagrophytes. Microbiology 150(Pt 8):2785–2790PubMedGoogle Scholar
  58. Kawabe M, Mizutani K, Yoshida T, Teraoka T, Yoneyama K, Yamaguchi I, Arie T (2004) Cloning of the pathogenicity-related gene FPD1 in Fusarium oxysporum f. sp. lycopersici. J Gen Plant Pathol 70(1):16–20Google Scholar
  59. Keith R, GRIGG GW, WARING MJ (1987) Sequence-selective binding of phleomycin to DNA. Biochem J 243:847–851Google Scholar
  60. Kim K, Leem Y, Kim K, Kim K, Choi HT (2002) Transformation of the medicinal basidiomycete Trametes versicolor to hygromycin B resistance by restriction enzyme mediated integration. FEMS Microbiol Lett 209(2):273–276PubMedGoogle Scholar
  61. Kim S, Song J, Choi HT (2004) Genetic transformation and mutant isolation in Ganoderma lucidum by restriction enzyme‐mediated integration. FEMS Microbiol Lett 233(2):201–204PubMedGoogle Scholar
  62. Kim J, Myong K, Shim W, Yun S, Lee Y (2007) Functional characterization of acetylglutamate synthase and phosphoribosylamine-glycine ligase genes in Gibberella zeae. Curr Genet 51(2):99–108PubMedGoogle Scholar
  63. Kimura A, Takano Y, Furusawa I, Okuno T (2001) Peroxisomal metabolic function is required for appres-sorium-mediated plant infection by Colletotrichum lagenarium. Plant Cell 13(8):1945–1957PubMedPubMedCentralGoogle Scholar
  64. Krappmann S (2007) Gene targeting in filamentous fungi: the benefits of impaired repair. Fungal Biol Rev 21(1):25–29Google Scholar
  65. Kuspa A, Loomis WF (1992) Tagging developmental genes in Dictyostelium by restriction enzyme-mediated integration of plasmid DNA. Proc Natl Acad Sci U S A 89(18):8803–8807PubMedPubMedCentralGoogle Scholar
  66. Kuspa A, Loomis WF (1994) REMI-RFLP mapping in the Dictyostelium genome. Genetics 138(3):665–674PubMedPubMedCentralGoogle Scholar
  67. Larsen S, Weaver J, de Sa Campos K, Bulahan R, Nguyen J, Grove H, Huang A, Low L, Tran N, Gomez S (2013) Mutant strains of Pichia pastoris with enhanced secretion of recombinant proteins. Biotechnol Lett 35(11):1925–1935PubMedGoogle Scholar
  68. Leem Y-e, Kim S-j, Ross IK, Choi HT (1999) Transformation and laccase mutant isolation in Coprinus congregatus by restriction enzyme-mediated integration. FEMS Microbiol Lett 172(1):35–40Google Scholar
  69. Leem YE, Ross IK, Choi HT (2003) Tagging and localization of a phospholipase D gene in Coprinellus congregatus by restriction enzyme‐mediated integration and pulsed‐field gel electrophoresis. FEMS Microbiol Lett 225(2):285–289PubMedGoogle Scholar
  70. Linnemannstons P, Voss T, Hedden P, Gaskin P, Tudzynski B (1999) Deletions in the gibberellin biosynthesis gene cluster of Gibberella fujikuroi by restriction enzyme-mediated integration and conventional transformation-mediated mutagenesis. Appl Environ Microbiol 65(6):2558–2564PubMedPubMedCentralGoogle Scholar
  71. Liu Y, Whittier RF (1995) Thermal asymmetric interlaced PCR: automatable amplification and sequencing of insert end fragments from P1 and YAC clones for chromosome walking. Genomics 25(3):674–681PubMedGoogle Scholar
  72. Lopes FJF, Queiroz MV, Lima JO, Silva VAO, Araújo EF (2008) Restriction enzyme improves the efficiency of genetic transformations in Moniliophthora perniciosa, the causal agent of witches broom disease in Theobroma cacao. Braz Arch Biol Technol 51(1):27–34Google Scholar
  73. Lu S, Lyngholm L, Yang G, Bronson C, Yoder OC, Turgeon BG (1994) Tagged mutations at the Tox1 locus of Cochliobolus heterostrophus by restriction enzyme-mediated integration. Proc Natl Acad Sci U S A 91(26):12649–12653PubMedPubMedCentralGoogle Scholar
  74. Maassen N, Freese S, Schruff B, Passoth V, Klinner U (2008) Nonhomologous end joining and homologous recombination DNA repair pathways in integration mutagenesis in the xylose‐fermenting yeast Pichia stipitis. FEMS Yeast Res 8(5):735–743PubMedGoogle Scholar
  75. Maehara T, Yoshida M, Ito Y, Tomita S, Takabatake K, Ichinose H, Kaneko S (2010) Development of a gene transfer system for the mycelia of Flammulina velutipes Fv-1 strain. Biosci Biotechnol Biochem 74(5):1126–1128PubMedGoogle Scholar
  76. Makino R, Kamada T (2004) Isolation and characterization of mutations that affect nuclear migration for dikaryosis in Coprinus cinereus. Curr Genet 45(3):149–156PubMedGoogle Scholar
  77. Manivasakam P, Schiestl RH (1998) Nonhomologous end joining during restriction enzyme-mediated DNA integration in Saccharomyces cerevisiae. Mol Cell Biol 18(3):1736–1745PubMedPubMedCentralGoogle Scholar
  78. McVey M, Lee SE (2008) MMEJ repair of double-strand breaks (director’s cut): deleted sequences and alternative endings. Trends Genet 24(11):529–538PubMedGoogle Scholar
  79. Michielse CB, Van Wijk R, Reijnen L, Cornelissen B, Rep M (2009) Insight into the molecular requirements for pathogenicity of Fusarium oxysporum f. sp. lycopersici through large-scale insertional mutagenesis. Genome Biol 10(1):R4PubMedPubMedCentralGoogle Scholar
  80. Morita K, Kimura S, Saito M, Shinoyama H, Usami T, Amemiya Y, Shishido M (2005) Generation and characterization of reduced virulence Fusarium oxysporum f. sp. lycopersici mutants through plasmid-vector insertion. Mycopathologia 160(1):67–73PubMedGoogle Scholar
  81. Mukaiyama H, Oku M, Baba M, Samizo T, Hammond AT, Glick BS, Kato N, Sakai Y (2002) Paz2 and 13 other PAZ gene products regulate vacuolar engulfment of peroxisomes during micropexophagy. Genes Cells 7(1):75–90PubMedGoogle Scholar
  82. Muraguchi H, Fujita T, Kishibe Y, Konno K, Ueda N, Nakahori K, Yanagi SO, Kamada T (2008) The exp1 gene essential for pileus expansion and autolysis of the inky cap mushroom Coprinopsis cinerea (Coprinus cinereus) encodes an HMG protein. Fungal Genet Biol 45(6):890–896PubMedGoogle Scholar
  83. Nakazawa T, Tatsuta Y, Fujita T, Nakahori K, Kamada T (2010) Mutations in the Cc. rmt1 gene encoding a putative protein arginine methyltransferase alter developmental programs in the basidiomycete Coprinopsis cinerea. Curr Genet 56(4):361–367PubMedGoogle Scholar
  84. Nakazawa T, Ando Y, Kitaaki K, Nakahori K, Kamada T (2011) Efficient gene targeting in ΔCc. ku70 or ΔCc. lig4 mutants of the agaricomycete Coprinopsis cinerea. Fungal Genet Biol 48(10):939–946PubMedGoogle Scholar
  85. Namiki F, Matsunaga M, Okuda M, Inoue I, Nishi K, Fujita Y, Tsuge T (2001) Mutation of an arginine biosynthesis gene causes reduced pathogenicity in Fusarium oxysporum f. sp. melonis. Mol Plant Microbe Interact 14(4):580–584PubMedGoogle Scholar
  86. Noh W, Kim SW, Bae D-W, Kim JY, Ro HS (2010) Genetic introduction of foreign genes to Pleurotus eryngii by restriction enzyme-mediated integration. J Microbiol 48(2):253–256PubMedGoogle Scholar
  87. Ochman H, Gerber AS, Hartl DL (1988) Genetic applications of an inverse polymerase chain reaction. Genetics 120(3):621–623PubMedPubMedCentralGoogle Scholar
  88. Papp T, Csernetics Á, Nagy G, Bencsik O, Iturriaga EA, Eslava AP, Vágvölgyi C (2013) Canthaxanthin production with modified Mucor circinelloides strains. Appl Microbiol Biotechnol 97(11):4937–4950PubMedGoogle Scholar
  89. Pears CJ, Couto CA, Wang HY, Borer C, Kiely R, Lakin ND (2012) The role of ADP-ribosylation in regulating DNA double-strand break repair. Cell Cycle 11(1):48–56PubMedPubMedCentralGoogle Scholar
  90. Ramamoorthy V, Zhao X, Snyder AK, Xu J, Shah DM (2007) Two mitogen‐activated protein kinase signalling cascades mediate basal resistance to antifungal plant defensins in Fusarium graminearum. Cell Microbiol 9(6):1491–1506PubMedGoogle Scholar
  91. Redman RS, Rodriguez RJ (1994) Factors affecting the efficient transformation of Colletotrichum Species. Exp Mycol 18(3):230–246Google Scholar
  92. Redman RS, Ranson JC, Rodriguez RJ (1999) Conversion of the pathogenic fungus Colletotrichum magna to a nonpathogenic, endophytic mutualist by gene disruption. Mol Plant Microbe Interact 12(11):969–975Google Scholar
  93. Rho H, Kang S, Lee Y (2001) Agrobacterium tumefaciens-mediated transformation of the plant pathogenic fungus, Magnaporthe grisea. Mol Cells 12(3):407–411PubMedGoogle Scholar
  94. Ridenour JB, Smith JE, Hirsch RL, Horevaj P, Kim H, Sharma S, Bluhm BH (2013) UBL1 of Fusarium verticillioides links the N‐end rule pathway to extracellular sensing and plant pathogenesis. Environ Microbiol 16(7):2004–2022. doi: 10.1111/1462-2920.12333 PubMedGoogle Scholar
  95. Riggle PJ, Kumamoto CA (1998) Genetic analysis in fungi using restriction-enzyme-mediated integration. Curr Opin Microbiol 1(4):395–399PubMedGoogle Scholar
  96. Rogers CW, Challen MP, Green JR, Whipps JM (2004) Use of REMI and Agrobacterium‐mediated transformation to identify pathogenicity mutants of the biocontrol fungus, Coniothyrium minitans. FEMS Microbiol Lett 241(2):207–214PubMedGoogle Scholar
  97. Salame TM, Knop D, Tal D, Levinson D, Yarden O, Hadar Y (2012) Predominance of a versatile-peroxidase-encoding gene, mnp4, as demonstrated by gene replacement via a gene targeting system for Pleurotus ostreatus. Appl Environ Microbiol 78(15):5341–5352PubMedPubMedCentralGoogle Scholar
  98. Sanchez O, Navarro R, Aguirre J (1998) Increased transformation frequency and tagging of developmental genes in Aspergillus nidulans by restriction enzyme-mediated integration (REMI). Mol Gen Genet 258(1–2):89–94PubMedGoogle Scholar
  99. Sato T, Yaegashi K, Ishii S, Hirano T, Kajiwara S, Shishido K, Enei H (1998) Transformation of the edible basidiomycete Lentinus edodes by restriction enzyme-mediated integration of plasmid DNA. Biosci Biotechnol Biochem 62(12):2346–2350PubMedGoogle Scholar
  100. Sato T, Okawa K, Hirano T (2011) Construction of novel vectors for transformation of Lentinula edodes using a chitin synthase gene promoter. J Biosci Bioeng 111(2):117–120PubMedGoogle Scholar
  101. Schiestl RH, Petes TD (1991) Integration of DNA fragments by illegitimate recombination in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 88(17):7585–7589PubMedPubMedCentralGoogle Scholar
  102. Schiestl RH, Zhu J, Petes TD (1994) Effect of mutations in genes affecting homologous recombination on restriction enzyme-mediated and illegitimate recombination in Saccharomyces cerevisiae. Mol Cell Biol 14(7):4493–4500PubMedPubMedCentralGoogle Scholar
  103. Seong K, Hou Z, Tracy M, Kistler HC, Xu J (2005) Random insertional mutagenesis identifies genes associated with virulence in the wheat scab fungus Fusarium graminearum. Phytopathology 95(7):744–750PubMedGoogle Scholar
  104. Seong K, Li L, Hou Z, Tracy M, Kistler HC, Xu J (2006) Cryptic promoter activity in the coding region of the HMG-CoA reductase gene in Fusarium graminearum. Fungal Genet Biol 43(1):34–41PubMedGoogle Scholar
  105. Sexton A, Howlett B (2001) Green fluorescent protein as a reporter in the BrassicaLeptosphaeria maculans interaction. Physiol Mol Plant Pathol 58(1):13–21Google Scholar
  106. Shi Z, Christian D, Leung H (1995) Enhanced transformation in Magnaporthe grisea by restriction enzyme mediated integration of plasmid DNA. Phytopathology 85(3):329–333Google Scholar
  107. Shim WB, Woloshuk CP (2001) Regulation of fumonisin B(1) biosynthesis and conidiation in Fusarium verticillioides by a cyclin-like (C-type) gene, FCC1. Appl Environ Microbiol 67(4):1607–1612PubMedPubMedCentralGoogle Scholar
  108. Shim W, Sagaram US, Choi Y, So J, Wilkinson HH, Lee Y (2006) FSR1 is essential for virulence and female fertility in Fusarium verticillioides and F. graminearum. Mol Plant Microbe Interact 19(7):725–733PubMedGoogle Scholar
  109. Shuster J, Connelley MB (1999) Promoter-tagged restriction enzyme-mediated insertion (PT-REMI) mutagenesis in Aspergillus niger. Mol Gen Genet 262(1):27–34PubMedGoogle Scholar
  110. Soid‐Raggi G, Sánchez O, Aguirre J (2006) TmpA, a member of a novel family of putative membrane flavoproteins, regulates asexual development in Aspergillus nidulans. Mol Microbiol 59(3):854–869PubMedGoogle Scholar
  111. Stromhaug PE, Bevan A, Dunn WA Jr (2001) GSA11 encodes a unique 208-kDa protein required for pexophagy and autophagy in Pichia pastoris. J Biol Chem 276(45):42422–42435PubMedGoogle Scholar
  112. Sweigard JA, Carroll AM, Farrall L, Chumley FG, Valent B (1998) Magnaporthe grisea pathogenicity genes obtained through insertional mutagenesis. Mol Plant Microbe Interact 11(5):404–412PubMedGoogle Scholar
  113. Takano Y, Takayanagi N, Hori H, Ikeuchi Y, Suzuki T, Kimura A, Okuno T (2006) A gene involved in modifying transfer RNA is required for fungal pathogenicity and stress tolerance of Colletotrichum lagenarium. Mol Microbiol 60(1):81–92PubMedGoogle Scholar
  114. Talhinhas P, Muthumeenakshi S, Neves-Martins J, Oliveira H, Sreenivasaprasad S (2008) Agrobacterium-mediated transformation and insertional mutagenesis in Colletotrichum acutatum for investigating varied pathogenicity lifestyles. Mol Biotechnol 39(1):57–67PubMedGoogle Scholar
  115. Tanaka A, Shiotani H, Yamamoto M, Tsuge T (1999) Insertional mutagenesis and cloning of the genes required for biosynthesis of the host-specific AK-toxin in the Japanese pear pathotype of Alternaria alternata. Mol Plant Microbe Interact 12(8):691–702PubMedGoogle Scholar
  116. Tang J, Liu L, Hu S, Chen Y, Chen J (2009) Improved degradation of organophosphate dichlorvos by Trichoderma atroviride transformants generated by restriction enzyme-mediated integration (REMI). Bioresour Technol 100(1):480–483PubMedGoogle Scholar
  117. Thon M, Nuckles E, Vaillancourt L (2000) Restriction enzyme-mediated integration used to produce pathogenicity mutants of Colletotrichum graminicola. Mol Plant Microbe Interact 13(12):1356–1365PubMedGoogle Scholar
  118. Tunlid A, Åhman J, Oliver R (1999) Transformation of the nematode‐trapping fungus Arthrobotrys oligospora. FEMS Microbiol Lett 173(1):111–116PubMedGoogle Scholar
  119. Van Dijk R, Faber K, Hammond A, Glick B, Veenhuis M, Kiel J (2001) Tagging Hansenula polymorpha genes by random integration of linear DNA fragments (RALF). Mol Genet Genomics 266(4):646–656PubMedGoogle Scholar
  120. Van Peer AF, De Bekker C, Vinck A, Wösten HAB, Lugones LG (2009) Phleomycin increases transformation efficiency and promotes single integrations in Schizophyllum commune. Appl Environ Microbiol 75(5):1243–1247PubMedPubMedCentralGoogle Scholar
  121. Wang Y, Guo B, Miao Z, Tang K (2007) Transformation of taxol‐producing endophytic fungi by restriction enzyme‐mediated integration (REMI). FEMS Microbiol Lett 273(2):253–259PubMedGoogle Scholar
  122. Wang B, Liu L, Gao Y, Chen J (2009) Improved phytoremediation of oilseed rape (Brassica napus) by Trichoderma mutant constructed by restriction enzyme-mediated integration (REMI) in cadmium polluted soil. Chemosphere 74(10):1400–1403PubMedGoogle Scholar
  123. Wang Y, Liu T, Hou J, Zuo Y (2013) Isolation and identification of pathogenicity mutant of Curvularia lunata via restriction enzyme-mediated integration. Indian J Microbiol 53(3):303–307PubMedPubMedCentralGoogle Scholar
  124. Weld RJ, Plummer KM, Carpenter MA, Ridgway HJ (2006) Approaches to functional genomics in filamentous fungi. Cell Res 16(1):31–44PubMedGoogle Scholar
  125. Yakoby N, Zhou R, Kobiler I, Dinoor A, Prusky D (2001) Development of Colletotrichum gloeosporioides restriction enzyme-mediated integration mutants as biocontrol agents against anthracnose disease in avocado fruits. Phytopathology 91(2):143–148PubMedGoogle Scholar
  126. Yang J, Zhao X, Liang L, Xia Z, Lei L, Niu X, Zou C, Zhang K (2011) Overexpression of a cuticle-degrading protease Ver112 increases the nematicidal activity of Paecilomyces lilacinus. Appl Microbiol Biotechnol 89(6):1895–1903PubMedGoogle Scholar
  127. Yaver DS, Lamsa M, Munds R, Brown SH, Otani S, Franssen L, Johnstone JA, Brody H (2000) Using DNA-tagged mutagenesis to improve heterologous protein production in Aspergillus oryzae. Fungal Genet Biol 29(1):28–37PubMedGoogle Scholar
  128. Yoshida T, Kawabe M, Miyata Y, Teraoka T, Arie T (2008) Biocontrol activity in a nonpathogenic REMI mutant of Fusarium oxysporum f. sp. conglutinans and characterization of its disrupted gene. J Pestic Sci 33(3):234–242Google Scholar
  129. You B, Choquer M, Chung K (2007) The Colletotrichum acutatum gene encoding a putative pH-responsive transcription regulator is a key virulence determinant during fungal pathogenesis on citrus. Mol Plant Microbe Interact 20(9):1149–1160PubMedGoogle Scholar
  130. Young C, McMillan L, Telfer E, Scott B (2001) Molecular cloning and genetic analysis of an indole‐diterpene gene cluster from Penicillium paxilli. Mol Microbiol 39(3):754–764PubMedGoogle Scholar
  131. Yun S, Turgeon B, Yoder O (1998) REMI-induced mutants of Mycosphaerella zeae-maydis lacking the polyketide PM-toxin are deficient in pathogenesis to corn. Physiol Mol Plant Pathol 52(1):53–66Google Scholar
  132. Zhou X, Xu S, Liu L, Chen J (2007) Degradation of cyanide by Trichoderma mutants constructed by restriction enzyme mediated integration (REMI). Bioresour Technol 98(15):2958–2962PubMedGoogle Scholar
  133. Zhu H, Wang T, Sun S, Shen Y, Wei D (2006) Chromosomal integration of the Vitreoscilla hemoglobin gene and its physiological actions in Tremella fuciformis. Appl Microbiol Biotechnol 72(4):770–776PubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Aurin M. Vos
    • 1
  • Luis G. Lugones
    • 1
  • Han A. B. Wösten
    • 1
  1. 1.Department of MicrobiologyUtrecht UniversityUtrechtThe Netherlands

Personalised recommendations