Evaluation of Competence Phenomenon of Yeast Saccharomyces cerevisiae by Lipophilic Cations Accumulation and FT-IR Spectroscopy. Relation of Competence to Cell Cycle

  • Aurelijus ZimkusEmail author
  • Audrius Misiūnas
  • Arūnas Ramanavičius
  • Larisa Chaustova
Part of the Fungal Biology book series (FUNGBIO)


Capability of taking up exogenous DNA of yeast Saccharomyces cerevisiae cells was studied by lipophilic cations accumulation and FT-IR spectroscopy. The increase in permeability of the yeast cells treated with Li+ ions was observed. The changes in the cell wall structure detected by FT-IR spectra were associated with transformability of yeast cells. The presence of a population of cells with buds with a higher permeability to TPP cations was determined. Relationship between transformation efficiency of yeast Saccharomyces cerevisiae and cell cycle was determined. Yeast cells in the S-phase of cell cycle showed an enhanced perception to exogenous DNA. An increase was associated with physiological and permeability properties of yeast cells. The phenomenon of natural competence is supposed to occur in yeast cells.


Saccharomyces cerevisiae Cell cycle Natural competence Permeability FT-IR 


  1. Aguilar-Uscanga B, François JM (2003) A study of the yeast cell wall composition and structure in response to growth conditions and mode of cultivation. Lett Appl Microbiol 37:268–274PubMedCrossRefGoogle Scholar
  2. Ballarin-Denti A, Slayman CL, Kuroda H (1994) Small lipid-soluble cations are not membrane voltage probes for Neurospora or Saccharomyces. Biochim Biophys Acta 1190:43–56PubMedCrossRefGoogle Scholar
  3. Ballou L, Hernandez LM, Alvarado E, Ballou CE (1990) Revision of the oligosaccharide structures of yeast carboxypeptidase Y. Proc Natl Acad Sci U S A 87(9):3368–3372PubMedCrossRefPubMedCentralGoogle Scholar
  4. Ballou CE (1990) Isolation, characterization, and properties of Saccharomyces cerevisiae mnn mutants with nonconditional protein glycosylation defects. Methods Enzymol 185:441–472Google Scholar
  5. Boone C, Sommer SS, Hensel A, Bussey H (1990) Yeast KRE genes provide evidence for a pathway of cell wall beta-glucan assembly. J Cell Biol 110:1833–1843PubMedCrossRefGoogle Scholar
  6. Brewer BJ, Chlebowicz-Sledziewska E, Fangman WL (1984) Cell cycle phases in the unequal mother/daughter cell cycles of Saccharomyces cerevisiae. Mol Cell Biol 4:2529–2531PubMedPubMedCentralGoogle Scholar
  7. Brzobohaty B, Kovac L (1986) Factors enhancing genetic transformation of intact yeast cells modify cell wall porosity. J Gen Microbiol 132:3089–3093PubMedGoogle Scholar
  8. Brown JL, Kossarczka Z, Jiang B, Bussey H (1993) A mutational analysis of killer resistance in identifies new genes involved in Saccharomyces cerevisiae cell wall (1–6)-beta-glucan synthesis. Genetics 133:837–849PubMedPubMedCentralGoogle Scholar
  9. Boxman AW, Barts PWJA, Borst-Pauwels GWFH (1982) Some characteristics of tetraphenylphosphonium uptake into S. cerevisiae. Biochim Biophys Acta 686:13–18PubMedCrossRefGoogle Scholar
  10. Caro LH, Smits GJ, van Egmond P, Chapman JW, Klis FM (1998) Transcription of multiple cell wall protein-encoding genes in Saccharomyces cerevisiae is differentially regulated during the cell cycle. FEMS Microbiol Lett 161:345–349PubMedCrossRefGoogle Scholar
  11. Chaustova L (2000) Plasmid transformation efficiency of Saccharomyces cerevisiae with defects in cell wall synthesis. Biologija (Lithuania) 4:3–5Google Scholar
  12. Chaustova L, Jasaitis A (1994) Changes in the efficiency of yeast Saccharomyces cerevisiae transformation by plasmid DNA during synchronous growth and under the influence of lypophilic compounds. Biologija (Lithuania) 1:8–13Google Scholar
  13. Chaustova L, Zimkus A (2004) Relationship between the efficiency of yeast Saccharomyces cerevisiae transformation and cell cycle. Biologija (Lithuania) 2:29–32Google Scholar
  14. Chaustova L, Miliukienė V, Zimkus A, Razumas V (2008) Metabolic state and cell cycle as determinants of facilitated uptake of genetic information by yeast Saccharomyces cerevisiae. Cent Eur J Biol 4:417–421CrossRefGoogle Scholar
  15. Casal HL, Mantsch HH, Paltauf F, Hauser H (1973) Infrared and 3* P-NMR studies of the effect of Li+ and Ca2+ on phosphatidylserines. Biochim Biophys Acta 919:275–286CrossRefGoogle Scholar
  16. Chen P, Liu HH, Cui R, Zhang ZL, Pang DW, Xie ZX, Zheng HZ, Lu ZX, Tong H (2008) Visualized investigation of yeast transformation induced with Li+ and polyethylene glycol. Talanta 77:262–268PubMedCrossRefGoogle Scholar
  17. Cid VJ, Cenamor R, Duran A, Del Ray F, Snyder MP, Nombela C, Sanchez M (1995) Molecular basis of cell integrity and morphogenesis in Saccharomyces cerevisiae. Microbiol Rev 59:345–386PubMedPubMedCentralGoogle Scholar
  18. Cohen E, Gitler C, Ben-Shaul Y (1981) Cell surface labeling of embryonic neural retina cells exposed to low temperature, energy inhibitors, cytochalasin B and colchicin. Cell Differ 10:333–342PubMedCrossRefGoogle Scholar
  19. De Nobel H, Dijkers C, Hooijberg E, Klis FM (1989) Increased cell wall porosity in Saccharomyces cerevisiae after treatment with dithiothreitol or EDTA. J Gen Microbiol 135:2077–2084Google Scholar
  20. De Nobel H, Klis FM, Priem J, Munnik T, Van den Ende H (1990) The glucanase-soluble mannoproteins limit cell wall porosity in Saccharomyces cerevisiae. Yeast 6:491–499PubMedCrossRefGoogle Scholar
  21. De Nobel H, van Den Ende H, Klis FM (2000) Cell wall maintenance in fungi. Trends Microbiol 8:344–345PubMedCrossRefGoogle Scholar
  22. Dreiseikelmann B (1994) Translocation of DNA across bacterial membrane. Microbiol Rev 58:293–316PubMedPubMedCentralGoogle Scholar
  23. Dubnau D (1999) DNA uptake in bacteria. Annu Rev Microbiol 53:217–244PubMedCrossRefGoogle Scholar
  24. Elkins C, Thomas CE, Seifert HS, Sparling PF (1991) Species-specific uptake of DNA by gonococci is mediated by a 10-base-pair sequence. J Bacteriol 173:3911–3913PubMedPubMedCentralGoogle Scholar
  25. Eynard N, Rols M, Ganeva P, Galutzov V, Sabri N, Teissie J (1997) Electro transformation pathways of prokaryotic and eucaryotic cells: recent developments. Bioelectrochem Bioenerg 44:103–110CrossRefGoogle Scholar
  26. Fischer G, Braun S, Thissen R, Dott W (2006) FT-IR spectroscopy as a tool for rapid identification and intra-species characterization of airborne filamentous fungi. J Microbiol Methods 64:63–77PubMedCrossRefGoogle Scholar
  27. Galichet G, Sockalingum A, Belarbi A, Manfait M (2001) FTIR spectroscopic analysis of cell walls: study of an anomalous strain exhibiting a pink-colored cell phenotype. FEMS Microbiol Lett 197:179–186PubMedCrossRefGoogle Scholar
  28. Gásková D, Brodská B, Herman P, Vecer J, Malínský J, Sigler K, Benada O, Plásek J (1998) Fluorescent probing of membrane potential in walled cells: diS-C3(3) assay in Saccharomyces cerevisiae. Yeast 14:1189–1197PubMedCrossRefGoogle Scholar
  29. Gietz R, Jean A, Woods R, Schiestl R (1992) Improved method for high efficiency transformation of intact yeast cells. Nucleic Acids Res 20:1425PubMedCrossRefPubMedCentralGoogle Scholar
  30. Hakenbeck R (2000) Transformation in Streptococcus pneumoniae: mosaic genes and the regulation of competence. Res Microbiol 151:453–456PubMedCrossRefGoogle Scholar
  31. Hausler A, Ballou L, Ballou CE, Robbins PW (1992) Yeast glycoprotein biosynthesis: MNT1 encodes an α-1,2-mannosyltransferase involved in O-glycosylation. Proc Natl Acad Sci U S A 89:6846–6850PubMedCrossRefPubMedCentralGoogle Scholar
  32. Hayama Y, Fukuda Y, Kawai S, Hashimoto W, Murata K (2002) Extremely simple, rapid and highly efficient transformation method for the yeast Saccharomyces cerevisiae using glutathione and early log phase cells. J Biosci Bioeng 94:166–171PubMedCrossRefGoogle Scholar
  33. Helm D, Naumann D (1995) Identification of some bacterial cell components by FT-IR spectroscopy. FEMS Microbiol Lett 126:75–80CrossRefGoogle Scholar
  34. Henderson DO, Mu R, Gunasekaran M (1996) A rapid method for the identification of Candida at the species level by Fourier-transform infrared spectroscopy. Biochem Lett 51:223–228Google Scholar
  35. Hill K, Boone C, Goebl M, Puccia R, Sdicu AM, Bussey H (1992) Yeast KRE2 defines a new family encoding probable secretory proteins, and is required for the correct N-glycosylation of proteins. Genetics 130:273–283PubMedPubMedCentralGoogle Scholar
  36. Hinnen A, Hicks JB, Fink GR (1978) Transformation of yeast. Proc Natl Acad Sci U S A 75:1929–1933PubMedCrossRefPubMedCentralGoogle Scholar
  37. Ito H, Fukuda J, Murata K, Kimura A (1983) Transformation of intact yeast cells with alkali cations. J Bacteriol 153:163–168PubMedPubMedCentralGoogle Scholar
  38. Kamei H (1995) A nuclear dot-like structure that has a relationship with perinuclear intermediate filaments. Exp Cell Res 218:155–165PubMedCrossRefGoogle Scholar
  39. Kapteyn JC, van den Ende H, Klis FM (1999) The contribution of cell wall proteins to the organization of the yeast cell wall. Biochim Biophys Acta 1426:373–383PubMedCrossRefGoogle Scholar
  40. Karreman RJ, Dague E, Gaboriaud F, Quiles F, Duval JFL, Lindsey GG (2007) The stress response protein Hsp 12p increases the flexibility of the yeast Saccharomyces cerevisiae cell wall. Biochim Biophys Acta 1774:131–137PubMedCrossRefGoogle Scholar
  41. Kawai S, Hashimoto W, Murata K (2010) Transformation of Saccharomyces cerevisiae and other fungi. Methods and possible underlying mechanism. Bioeng Bugs 1:395–403PubMedCrossRefPubMedCentralGoogle Scholar
  42. Kawai S, Pham TA, Nguyen HT, Nankai H, Utsumi T, Fukuda Y, Murata K (2004) Molecular insights on DNA delivery into Saccharomyces cerevisiae. Biochem Biophys Res Commun 317:100–107PubMedCrossRefGoogle Scholar
  43. Kollar R, Reinhold B, Petráková E, Yeh HJC, Ashwell G, Drgonová J, Kapteyn JC, Klis FM, Cabib E (1997) Architecture of the yeast cell wall. J Biol Chem 272:17762–17775PubMedCrossRefGoogle Scholar
  44. Klis FM (1994) Review: cell all assembly in yeast. Yeast 10:851–869PubMedCrossRefGoogle Scholar
  45. Klis FM, Mol P, Hellingwerf K, Brul S (2002) Dynamics of cell wall structure in Saccharomyces cerevisiae. FEMS Microbiol Rev 26:239–256PubMedCrossRefGoogle Scholar
  46. Klis FM, Boorsma A, De Groot PWJ (2006) Cell wall construction in Saccharomyces cerevisiae. Yeast 23(3):185–202PubMedCrossRefGoogle Scholar
  47. Kümmerle M, Scherer S, Seiler H (1998) Rapid and reliable identification of food-borne yeasts by Fourier-transform infrared spectroscopy. Appl Environ Microbiol 64:2207–2214PubMedPubMedCentralGoogle Scholar
  48. Laidiga KE, Speers P, Streitwieser A (2000) Complexation of Li, Na, and K by water and ammonia. Coord Chem Rev 197:125–139CrossRefGoogle Scholar
  49. Lesage G, Bussey H (2006) Cell wall assembly in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 70:317–343PubMedCrossRefPubMedCentralGoogle Scholar
  50. Lipke PN, Ovalle R (1998) Cell wall architecture in yeast: new structure and new challenges. J Bacteriol 180:3735–3740PubMedPubMedCentralGoogle Scholar
  51. Lu CF, Montijn RC, Brown JL, Klis F, Kurjan J, Bussey H, Lipke PN (1995) Glycosyl phosphatidylinositol-dependent cross-linking of alpha-agglutinin and beta 1,6-glucan in the Saccharomyces cerevisiae cell wall. J Cell Biol 128:333–340PubMedCrossRefGoogle Scholar
  52. Lyubartsev AP, Laaksonen A (1998) Molecular dynamics simulation of DNA in presence of different counterions. J Biomol Struct Dyn 16:579–592PubMedCrossRefGoogle Scholar
  53. Marenzi S, Adams R, Zardo G, Lenti L, Reale A, Caiafa P (1999) Efficiency of expression of transfected genes depends on the cell cycle. Mol Biol Rep 26:261–267PubMedCrossRefGoogle Scholar
  54. Mariey L, Signolle JP, Amiel C, Travert J (2001) Discrimination, classification, identification of microorganisms using FTIR spectroscopy and chemometrics. Vib Spectrosc 26:151–159CrossRefGoogle Scholar
  55. Mitrikeski P (2013) Yeast competence for exogenous DNA uptake: towards understanding its genetic component. Antonie Van Leeuwenhoek 103(6):1181–1207PubMedCrossRefGoogle Scholar
  56. Meilhoc E, Masson JM, Teissié J (1990) High efficiency transformation of intact yeast cells by electric field pulses. Biotechnology (N Y) 8:223–227CrossRefGoogle Scholar
  57. Misiūnas A, Talaikytė Z, Niaura G, Razumas V, Nylander T (2008) Thermomyces lanuginosus lipase in the liquid-crystalline phases of aqueous phytantriol: x-ray diffraction and vibrational spectroscopic studies. Biophys Chem 134:144–156PubMedCrossRefGoogle Scholar
  58. Naumann D (1998) Infrated and NIR Raman spectroscopy in medical microbiology. In: Manch HH, Jackson M (eds) Infrared spectroscopy: new tool in medicine, vol 3257, SPIE Proceeding Series. SPIE, Bellingham, pp 245–257Google Scholar
  59. Naumann D (2000) Infrared spectroscopy in microbiology. In: Meyers RA (ed) Encyclopedia of analytical chemistry. Wiley, Chichester, pp 102–131Google Scholar
  60. Naumann D, Helm D, Labischinski H (1991) Microbiological characterizations by FT-IR spectroscopy. Nature 351:81–82PubMedCrossRefGoogle Scholar
  61. Naumann D, Keller S, Helm D, Schultz C, Schrader B (1995) FT-IR spectroscopy and FT-Raman spectroscopy are powerful analytical tools for the non-invasive characterization of intact microbial cells. J Mol Struct 347:399–406CrossRefGoogle Scholar
  62. Nasmyth K (2001) A prize for proliferation. Cell 107:689–701PubMedCrossRefGoogle Scholar
  63. Nevoigt E, Fassbender A, Stahl U (2000) Cells of the Saccharomyces cerevisiae are transformable by DNA under non-artificial conditions. Yeast 16:1107–1110PubMedCrossRefGoogle Scholar
  64. Ojeda JJ, Romero-Gonza’lez ME, Bachmann RT, Edyvean RGJ, Banwart SA (2008) Characterization of the cell surface and cell wall chemistry of drinking water bacteria by combining XPS, FTIR spectroscopy, modeling, and potentiometric titrations. Langmuir 24:4032–4040PubMedCrossRefGoogle Scholar
  65. Orlean P (1997) Biogenesis of yeast wall and surface components. In: Pringle JR, Broach JR, Jones EW (eds) Cell cycle and cell biology, vol 3, vol 3. Cold Spring Harbor Laboratory, Cold Spring Harbor, pp 229–362Google Scholar
  66. Orsini F, Ami D, Villa AM, Sala G, Bellotti MG, Doglia SM (2000) FT-IR microspectroscopy for microbiological studies. J Microbiol Meth 42:17–27CrossRefGoogle Scholar
  67. Popolo L, Gualtieri T, Ragni E (2001) The yeast cell-wall salvage pathway. Med Mycol 39:111–121PubMedCrossRefGoogle Scholar
  68. Pringle JR, Lillie SH, Adams AE et al (1986) Cellular morphogenesis in the yeast cell cycle. In: Hicks J (ed) Yeast cell biology, vol 33. Alan R. Liss, New York, pp 47–80Google Scholar
  69. Pringle JR (1991) Staining of bud scars and other cell wall chitin with calcofluor. Methods Enzymol 194:732–735PubMedCrossRefGoogle Scholar
  70. Raschke WC, Kern KA, Antalis C, Ballou CE (1973) Isolation and characterization of mannan mutants. J Biol Chem 248:4660–4666PubMedGoogle Scholar
  71. Roemer T, Bussey H (1991) Yeast-glucan synthesis: KRE6 encodes a predicted type II membrane protein required for glucan synthesis in vivo and for glucan synthase activity in vitro. Proc Natl Acad Sci U S A 88:11295–11299PubMedCrossRefPubMedCentralGoogle Scholar
  72. Roemer T, Paravicini G, Payton MA, Bussey H (1994) Characterization of the yeast (1–6)-b-glucan biosynthetic components, Kre6p and Skn1p, and genetic interactions between the PKC1 pathway and extracellular matrix assembly. J Cell Biol 127:567–579PubMedCrossRefGoogle Scholar
  73. Rodriguez-Pena JM, Cid VJ, Arroyo J, Nombela C (2000) A novel family of cell wall-related proteins regulated differently during the yeast life cycle. Mol Cell Biol 20:3245–3255PubMedCrossRefPubMedCentralGoogle Scholar
  74. Rotenberg H (1997) The measurement of membrane potential and pH in cells, organelles and vesicles. In: Parker L, Fleisher S (eds) Biomembranes, selected methods in enzymology. Academic, San DiegoGoogle Scholar
  75. Ruiz-Herrera J (1992) Fungal cell wall: structure, synthesis, and assembly. CRC, Boca RatonGoogle Scholar
  76. Sandt C, Sockalingum GD, Aubert D, Lepan H, Lepouse C, Jaussaud M, Leon A, Pinon JM, Manfait M, Toubas D (2003) Use of Fourier-transform infrared spectroscopy for typing of Candida albicans strains isolated in intensive care units. J Clin Microbiol 41:954–959PubMedCrossRefPubMedCentralGoogle Scholar
  77. Santos C, Fraga ME, Kozakiewicz Z, Lima N (2010) Fourier transform infrared as a powerful technique for the identification and characterization of filamentous fungi and yeasts. Res Microbiol 161:168–175PubMedCrossRefGoogle Scholar
  78. Sasnauskas K, Jomantiene R, Geneviciute E, Januska A, Lebedys J (1991) Molecular cloning of the Candida maltose ADE1 gene. Gene 107:161–164PubMedCrossRefGoogle Scholar
  79. Siebert F (1995) Infrared spectroscopy applied to biochemical and biological problems. In: Sauer K (ed) Biochemical spectroscopy, methods in enzymology. Wiley, New York, pp 501–526CrossRefGoogle Scholar
  80. Smits GJ, Kapteyn JC, van den Ende H, Klis FM (1999) Cell wall dynamics in yeast. Curr Opin Microbiol 2:348–352PubMedCrossRefGoogle Scholar
  81. Smits G, van den Ende H, Klis FM (2001) Differential regulation of cell wall biogenesis during growth and development in yeast. Microbiology 147:781–794PubMedGoogle Scholar
  82. Spellman PT, Sherlock G, Zhang MQ, Iyer VR, Anders K, Eisen MB, Brown PO, Botstein D, Futcher B (1998) Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol Biol Cell 9:3273–3297PubMedCrossRefPubMedCentralGoogle Scholar
  83. Suga M, Isobe M, Hatakeyama T (2001) High efficiency transformation of Schizosaccharomyces pombe pretreated with thiol compounds by electroporation. Yeast 18:1015–1021PubMedCrossRefGoogle Scholar
  84. Sundaresan N, Thresia T, Thekkumkat JT, Chennakkatu KSP (2006) Lithium ion induced stabilization of the liquid crystalline DNA. Macromol Biosci 6:27–32PubMedCrossRefGoogle Scholar
  85. Venturi CB, Erkine AM, Gross DS (2000) Cell cycle-dependent binding of yeast heat shock factor to nucleosomes. Mol Cell Biol 20:6435–6448PubMedCrossRefPubMedCentralGoogle Scholar
  86. Wenning M, Seiler H, Scherer S (2002) Fourier-transform infrared microspectroscopy, a novel and rapid tool for identification of yeasts. Appl Environ Microbiol 68:4717–4721PubMedCrossRefPubMedCentralGoogle Scholar
  87. Zimkus A, Chaustova L (2004) Application of the liquid membrane combination of the tetraphenylphosphonium selective electrode for an assay of permeability properties of yeast Saccharomyces cerevisiae cells. Chemija (Lithuania) 2:27–30Google Scholar
  88. Zimkus A, Chaustova L, Razumas V (2006) Effect of lithium and sodium cations on the permeability of yeast Saccharomyces cerevisiae cells to tetraphenylphosphonium ions. Biologija (Lithuania) 2:47–49Google Scholar
  89. Zimkus A, Misiūnas A, Chaustova L (2013) Li+ effect on the cell wall of the yeast Saccharomyces cerevisiae as probed by FT-IR spectroscopy. Cent Eur J Biol 8:724–729CrossRefGoogle Scholar
  90. Zlotnik H, Fernandez MP, Bowers B, Cabib E (1984) Saccharomyces cerevisiae mannoproteins form an external cell wall layer that determines wall porosity. J Bacteriol 159:1018–1026PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Aurelijus Zimkus
    • 1
    • 2
    Email author
  • Audrius Misiūnas
    • 3
    • 4
  • Arūnas Ramanavičius
    • 2
    • 5
  • Larisa Chaustova
    • 6
  1. 1.Department of Biochemistry and Molecular BiologyVilnius UniversityVilniusLithuania
  2. 2.Center for Physical Sciences and TechnologyVilniusLithuania
  3. 3.Department of Organic ChemistryCenter for Physical Sciences and TechnologyVilniusLithuania
  4. 4.Department of BiopharmaceuticalCentre of Innovative MedicineVilniusLithuania
  5. 5.Center of Nanotechnology and Materials Science—NanoTechnas, Faculty of ChemistryVilnius UniversityVilniusLithuania
  6. 6.Department of Bioelectrochemistry and Biospectroscopy Institute of BiochemistryVilnius UniversityVilniusLithuania

Personalised recommendations