Transformation of Fungi Using Shock Waves

  • Miguel A. Gómez-LimEmail author
  • Denis Magaña Ortíz
  • Francisco Fernández
  • Achim M. Loske
Part of the Fungal Biology book series (FUNGBIO)


Genetic transformation of fungi faces major challenges. Most standard methods have a low frequency of transformation, problems of reproducibility, and are not suitable for high throughput experimentation. Additionally, there are many species of fungi that have proved recalcitrant to transformation by biolistics, electroporation, or agrobacterium transformation. We have developed a new method, based on the use of underwater shock waves that is highly efficient, simple, widely applicable, and not dependent on one particular type of tissue. Intact spores, conidia, or mycelia can be used. The method consists of the application of a few hundred shock waves to cell suspensions. Acoustic cavitation, i.e., the growth and violent collapse of microbubbles contained in the suspension, is responsible for a transient cell permeabilization. Several fungal species including, Aspergillus niger, Fusarium oxysporum, Phanerochaete chrysosporium, Trichoderma reesei, and Mycosphaerella fijiensis have been transformed successfully by this method. As an example, the methodology to transform Aspergillus niger is described in this chapter. Information on the basics of shock wave-mediated transformation of fungi is also included. Our main conclusion is that shock wave-mediated transformation is an attractive alternative for efficient fungal transformation.


Filamentous fungi Genetic transformation Shock waves Biotechnology Shock wave-mediated transformation 



The authors would like to thank Nancy Coconi, Claudia León, Elizabeth Ortiz, René Preza, Ángel Luis Rodríguez, and Guillermo Vázquez for technical assistance. This work was supported by DGAPA, UNAM Grant Number IN108410, and CONACYT Grant Number 22655.


  1. Arora M, Junge L, Ohl CD (2005) Cavitation cluster dynamics in shock-wave lithotripsy: part 1. Free field. Ultrasound Med Biol 31:827–839PubMedCrossRefGoogle Scholar
  2. Bao S, Thrall BD, Gies RA, Miller DL (1998) In Vivo transfection of melanoma cells by lithotripter shock waves. Cancer Res 58:219–221PubMedGoogle Scholar
  3. Bekeredjian R, Bohris C, Hansen A, Katus HA, Kuecherer HF, Hardt SE (2007) Impact of microbubbles on shock wave-mediated DNA uptake in cells in vitro. Ultrasound Med Biol 5:743–750CrossRefGoogle Scholar
  4. Broekhuijsen MP, Mattern IE, Contreras R, Kinghorn JR, van den Hondel CA (1993) Secretion of heterologous proteins by Aspergillus niger: production of active human interleukin-6 in a protease-deficient mutant by KEX2-like processing of a glucoamylase-hIL6 fusion protein. J Biotechnol 31:135–145PubMedCrossRefGoogle Scholar
  5. Brujan EA, Ikeda T, Matsumoto Y (2008) On the pressure of cavitation bubbles. Exp Therm Fluid Sci 32:1188–1191CrossRefGoogle Scholar
  6. Campos-Guillén J, Fernández F, Pastrana X, Loske AM (2012) Relationship between plasmid size and shock wave-mediated bacterial transformation. Ultrasound Med Biol 38:1078–1084PubMedCrossRefGoogle Scholar
  7. Canseco G, de Icaza-Herrera M, Fernández F, Loske AM (2011) Modified shock waves for extracorporeal shock wave lithotripsy: a simulation based on the Gilmore formulation. Ultrasonics 51:803–810PubMedCrossRefGoogle Scholar
  8. Case ME, Schweizer M, Kushner SR, Giles NH (1979) Efficient transformation of Neurospora crassa by utilizing hybrid plasmid DNA. Proc Natl Acad Sci U S A 76:5259–5263PubMedCrossRefPubMedCentralGoogle Scholar
  9. de Groot MJ, Bundock P, Hooykaas PJ, Beijersbergen AG (1998) Agrobacterium tumefaciens-mediated transformation of filamentous fungi. Nat Biotechnol 16:839–842PubMedCrossRefGoogle Scholar
  10. Doukas AG, Kollias N (2004) Transdermal drug delivery with a pressure wave. Adv Drug Deliv Rev 56:559–579PubMedCrossRefGoogle Scholar
  11. Fincham JR (1989) Transformation in fungi. Microbiol Rev 53:148–170PubMedPubMedCentralGoogle Scholar
  12. Fleissner A, Dersch P (2010) Expression and export: recombinant protein production systems for Aspergillus. Appl Microbiol Biotechnol 87:1255–1270PubMedCrossRefGoogle Scholar
  13. Gambihler S, Delius M, Ellwart JW (1994) Permeabilization of the plasma membrane of L1210 mouse leukemia cells using lithotripter shock waves. J Membr Biol 141:267–275PubMedCrossRefGoogle Scholar
  14. Hinnen A, Hicks JB, Fink GR (1978) Transformation of yeast chimaeric ColEl plasmid carrying LEU2. Proc Natl Acad Sci U S A 75:1929–1933PubMedCrossRefPubMedCentralGoogle Scholar
  15. Hutchinson HT, Hartwell LH (1967) Macromolecule synthesis in yeast spheroplasts. J Bacteriol 94:1697–1705Google Scholar
  16. Iimura Y, Gotoh K, Ouchi K, Nishima T (1983) Transformation of yeast without the spheroplasting process. Agric Biol Chem 47:897–901CrossRefGoogle Scholar
  17. Jagadeesh G, Nataraja KN, Udayakumar M (2004) Shock waves can enhance bacterial transformation with plasmid DNA. Curr Sci 87:734–735Google Scholar
  18. Jarai G, Buxton F (1994) Nitrogen, carbon, and pH regulation of extracellular acidic proteases of Aspergillus niger. Curr Genet 26:238–244PubMedCrossRefGoogle Scholar
  19. Johnsen E, Colonius T (2008) Shock-induced collapse of a gas bubble in shock wave lithotripsy. J Acoust Soc Am 124:2011–2020PubMedCrossRefPubMedCentralGoogle Scholar
  20. Kodama T, Hamblin MR, Doukas AG (2000) Cytoplasmic molecular delivery with shock waves: importance of impulse. Biophys J 79:1821–1832PubMedCrossRefPubMedCentralGoogle Scholar
  21. Kodama T, Doukas AG, Hamblin MR (2002) Shock wave-mediated molecular delivery into cells. Biochim Biophys Acta 1542:186–194PubMedCrossRefGoogle Scholar
  22. Lauer U, Burgelt E, Squire Z, Messmer K, Hofschneider PH, Gregor M, Delius M (1997) Shock wave permeabilization as a new gene transfer method. Gene Ther 4:710–715PubMedCrossRefGoogle Scholar
  23. Lingeman JE (2007) Lithotripsy systems. In: Smith AD, Badlani GH, Bagley DH, Clayman RV, Docimo SG, Jordan GH, Kavoussi LR, Lee BR, Lingeman JR, Preminger GM, Segura JW (eds) Smith’s textbook on endourology. B.C. Decker, Hamilton, pp 333–342Google Scholar
  24. Liu Y, Yang H, Sakanishi A (2006) Ultrasound: mechanical gene transfer into plant cells by sonoporation. Biotechnol Adv 24:1–16PubMedCrossRefGoogle Scholar
  25. Lorito M, Hayes CK, Di Pietro A, Harman GE (1993) Biolistic transformation of Trichoderma harzianum and Gliocladium virens using plasmid and genomic DNA. Curr Genet 24:349–356PubMedCrossRefGoogle Scholar
  26. Loske AM (2007) Shock wave physics for urologists. Centro de Física Aplicada y Tecnología Avanzada, UNAM, Querétaro. ISBN 978-970-32-4377-8Google Scholar
  27. Loske AM, Campos-Guillén J, Fernández F, Castaño-Tostado E (2011) Enhanced shock wave-assisted transformation of Escherichia coli. Ultrasound Med Biol 37:502–510PubMedCrossRefGoogle Scholar
  28. Loske AM, Fernández F, Magaña-Ortíz D, Coconi-Linares D, Ortíz-Vázquez E, Gómez-Lim MA (2014) Tandem shock waves to enhance genetic transformation of Aspergillus niger. Ultrasonics 54:1656–1662PubMedCrossRefGoogle Scholar
  29. Magaña-Ortiz D, Coconi-Linares N, Ortiz-Vazquez E, Fernandez F, Loske AM, Gomez-Lim MA (2013) A novel and highly efficient method for genetic transformation of fungi employing shock waves. Fungal Genet Biol 56:9–16PubMedCrossRefGoogle Scholar
  30. Mattern I, van Noort J, van den Berg P, van den Hondel C (1992) Isolation and characterization of mutants of Aspergillus niger deficient in extracellular proteases. Mol Gen Genet 234:232–236CrossRefGoogle Scholar
  31. Meyer V (2008) Genetic engineering of filamentous fungi, progress, obstacles and future trends. Biotechnol Adv 26:177–185PubMedCrossRefGoogle Scholar
  32. Meyer V, Arentshorst M, El-Ghezal A, Drews AC, van den Kooistra R, Hondel CA, Ram AF (2007) Highly efficient gene targeting in the Aspergillus niger kusA mutant. J Biotechnol 128:770–775PubMedCrossRefGoogle Scholar
  33. Michel MS, Erben P, Trojan L, Schaaf A, Kiknavelidze K, Knoll T, Alken P (2004) Acoustic energy: a new transfection method for cancer of the prostate, cancer of the bladder and benign kidney cells. Anticancer Res 24:2303–2308PubMedGoogle Scholar
  34. Michielse CB, Hooykaas PJ, van den Hondel CA, Ram AF (2005) Agrobacterium-mediated transformation as a tool for functional genomics in fungi. Curr Genet 48:1–17PubMedCrossRefGoogle Scholar
  35. Mishra NC, Tatum EL (1973) Non-mendelian inheritance of DNA induced inositol independence in Neurospora. Proc Natl Acad Sci U S A 70:3875–3879PubMedCrossRefPubMedCentralGoogle Scholar
  36. Murata R, Nakagawa K, Ohtori S, Ochiai N, Arai M (2007) The effects of radial shock waves on gene transfer in rabbit chondrocytes in vitro. Osteoarthr Cartilage 15:1275–1282CrossRefGoogle Scholar
  37. Newman CMH, Bettinger T (2007) Gene therapy progress and prospects: ultrasound for gene transfer. Gene Ther 14:465–475PubMedCrossRefGoogle Scholar
  38. Ohl CD, Ikink R (2003) Shock-wave-induced jetting of micron-size bubble. Phys Rev Lett 90:214502–214505PubMedCrossRefGoogle Scholar
  39. Ozeki K, Kyoya F, Hizume K, Kanda A, Hamachi M, Nunokawa Y (1994) Transformation of intact Aspergillus niger by electroporation. Biosci Biotechnol Biochem 58:2224–2247PubMedCrossRefGoogle Scholar
  40. Philipp A, Delius M, Scheffcyk C, Vogel A, Lauterborn W (1993) Interaction of lithotripter generated shock waves with air bubbles. J Acoust Soc Am 93:2496–2509CrossRefGoogle Scholar
  41. Punekar NS, Suresh-Kumar SV, Jayashri TN (2003) Isolation of genomic DNA from acetone-dried Aspergillus mycelia. Fungal Genet Newslett 50:15–16Google Scholar
  42. Punt PJ, Schuren FH, Lehmbeck J, Christensen T, Hjort C, van den Hondel CA (2008) Characterization of the Aspergillus niger prtT, a unique regulator of extracellular protease encoding genes. Fungal Genet Biol 45:1591–1599PubMedCrossRefGoogle Scholar
  43. Radford A, Pope S, Sazci A, Fraser MJ, Parish JH (1981) Liposome-mediated genetic transformation of Neurospora crassa. Mol Gen Genet 184:567–569PubMedCrossRefGoogle Scholar
  44. Ruiz-Diez B (2002) Strategies for the transformation of filamentous fungi. J Appl Microbiol 92:189–195PubMedCrossRefGoogle Scholar
  45. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory, Cold Spring HarborGoogle Scholar
  46. Schaaf A, Langbein S, Knoll T, Alken P, Michel MS (2003) In vitro transfection of human bladder cancer cells by acoustic energy. Anticancer Res 23:4871–4875PubMedGoogle Scholar
  47. Su X, Schmitz G, Zhang M, Mackie RI, Cann IK (2012) Heterologous gene expression in filamentous fungi. Adv Appl Microbiol 81:1–61PubMedCrossRefGoogle Scholar
  48. Thiel M (2001) Application of shock waves in medicine. Clin Orthop Relat Res 387:18–21PubMedCrossRefGoogle Scholar
  49. Tilburn J, Scazzocchio C, Taylor GG, Zabicky-Zissima JH, Lockington RA, Davis RW (1983) Transformation by integration in Aspergillus nidiulans. Gene 26:205–221PubMedCrossRefGoogle Scholar
  50. Tschoep K, Hartmann G, Jox R, Thompson S, Eigler A, Krug A, Erhardt S, Adams G, Endres S, Delius M (2001) Shock waves: a novel method for cytoplasmic delivery of antisense oligonucleotides. J Mol Med 79:306–313PubMedCrossRefGoogle Scholar
  51. Ueberle F (2011) Application of shock waves and pressure pulses in medicine. In: Kramme R, Hoffmann KP, Pozos RS (eds) Springer handbook of medical technology. Springer, Berlin, pp 641–675CrossRefGoogle Scholar
  52. van den Hombergh JPTW, van de Vondervoort PJI (1995) New protease mutants in Aspergillus niger result in strongly reduced in vitro degradation of target proteins; genetical and biochemical characterization of seven complementation groups. Curr Genet 28:299–308PubMedCrossRefGoogle Scholar
  53. van den Hombergh JP, van de Vondervoort PJI, Fraissinet-Tachet L, Visser J (1997) Aspergillus as a host for heterologous protein production: the problem of proteases. Trends Biotechnol 15:256–263PubMedCrossRefGoogle Scholar
  54. Ward O (2012) Production of recombinant proteins by filamentous fungi. Biotechnol Adv 30:1119–1139PubMedCrossRefGoogle Scholar
  55. Ward M, Lin C, Victoria DC, Fox BP, Fox JA, Wong DL, Meerman HJ, Pucci JP, Fong RB, Heng MH, Tsurushita N, Gieswein C, Park M, Wang H (2004) Characterization of humanized antibodies secreted by Aspergillus niger. Appl Environ Microbiol 70:2567–2576PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Miguel A. Gómez-Lim
    • 1
    Email author
  • Denis Magaña Ortíz
    • 1
  • Francisco Fernández
    • 2
  • Achim M. Loske
    • 2
  1. 1.Department of Plant Genetic EngineeringCentro de Investigación y de Estudios Avanzados del IPNIrapuatoMexico
  2. 2.Centro de Física Aplicada y Tecnología AvanzadaUniversidad Nacional Autónoma de MéxicoJuriquillaMexico

Personalised recommendations