Advertisement

Application of Novel Polymeric Carrier of Plasmid DNA for Transformation of Yeast Cells

  • Yevhen Filyak
  • Nataliya Finiuk
  • Nataliya Mitina
  • Alexander Zaichenko
  • Rostyslav StoikaEmail author
Chapter
  • 2.2k Downloads
Part of the Fungal Biology book series (FUNGBIO)

Abstract

Genetic transformation of specific cells is a key research tool in modern basic biological studies, as well as in biotechnology and gene therapy. Here we propose a principally new method enabling easy and effective delivery of plasmid DNA into the industrially important yeast species, Hansenula polymorpha, Pichia pastoris (this chapter), and Saccharomyces cerevisiae (data not presented). The transformation method is using a novel gene delivery system based on a comb-like oligoelectrolyte polymer consisting of the anionic backbone and dimethyl aminoethyl methacrylate (DMAEM)-based side branches.

Keywords

Genetic transformation Hansenula polymorpha Yeast DNA delivery Comb-like oligoelectrolyte polymeric carrier Pichia pastoris 

Notes

Acknowledgements

This work was partly supported by the grants from the WUBMRC (Ukraine-USA), CRDF (USA), and F-46 project of the National Academy of Sciences of Ukraine, as well as by the project funded by the Ministry of Education and Science of Ukraine.

References

  1. Armaleo D, Ye GN, Klein TM, Shark KB, Sanford JC, Johnston SA (1990) Biolistic nuclear transformation of Saccharomyces cerevisiae and other fungi. Curr Genet 17:97–103PubMedCrossRefGoogle Scholar
  2. Bartel PL, Fields S (1995) Analyzing protein-protein interactions using two-hybrid system. Methods Enzymol 254:241–263PubMedCrossRefGoogle Scholar
  3. Becker DM, Guarente L (1991) High efficiency transformation of yeast by electroporation. Methods Enzymol 194:182–187PubMedCrossRefGoogle Scholar
  4. Brzobohaty B, Kovac L (1996) Factors enhancing genetic transformation of intact yeast cells modify cell wall porosity. J Gen Microbiol 132:3089–3093Google Scholar
  5. Butow RA, Henke RM, Moran JV, Belcher SM, Perlman PS (1996) Transformation of Saccharomyces cerevisiae mitochondria using the biolistic gun. Methods Enzymol 264:265–278PubMedCrossRefGoogle Scholar
  6. Costanzo MC, Fox TD (1988) Transformation of yeast by agitation with glass beads. Genetics 120:667–670PubMedPubMedCentralGoogle Scholar
  7. Daly R, Hearn MT (2005) Expression of heterologous proteins in Pichia pastoris: a useful experimental tool in protein engineering and production. J Mol Recognit 18:119–138PubMedCrossRefGoogle Scholar
  8. Dmytruk KV, Smutok OV, Ryabova OB, Gayda GZ, Sibirny VA, Schuhmann W, Gonchar MV, Sibirny AA (2007) Isolation and characterization of mutated alcohol oxidases from the yeast Hansenula polymorpha with decreased affinity toward substrates and their use as selective elements of an amperometric biosensor. BMC Biotechnol 7:33PubMedCrossRefPubMedCentralGoogle Scholar
  9. Faber KN, Swaving GJ, Faber F, Ab G, Harder W, Veenhuis M, Haima P (1992) Chromosomal targeting of replicating plasmids in the yeast Hansenula polymorpha. J Gen Microbiol 138:2405–2416PubMedCrossRefGoogle Scholar
  10. Filyak Y, Finiuk N, Mitina N, Bilyk O, Titorenko V, Hrydzhuk O, Zaichenko A, Stoika R (2013) A novel method for genetic transformation of yeast cells using oligoelectrolyte polymeric nanoscale carriers. Biotechniques 54:35–43PubMedCrossRefGoogle Scholar
  11. Gietz RD, Woods RA (2001) Genetic transformation of yeast. Biotechniques 30:816–831PubMedGoogle Scholar
  12. Gietz RD, Woods RA (2002) Transformation of yeast by lithium acetate/single-stranded carrier DNA/polyethylene glycol method. Methods Enzymol 350:87–96PubMedCrossRefGoogle Scholar
  13. Hill J, Ian KA, Donald G, Griffiths DE (1991) DMSO-enhanced whole cell yeast transformation. Nucleic Acids Res 19:57–91CrossRefGoogle Scholar
  14. Ito H, Murata K, Kimura A (1983a) Transformation of yeast cells treated with 2-mercaptoethanol. Agric Biol Chem 47:1691–1692CrossRefGoogle Scholar
  15. Ito H, Fukuda Y, Murata K, Kimura A (1983b) Transformation of intact yeast cells treated with alkali cations. J Bacteriol 153:163–168PubMedPubMedCentralGoogle Scholar
  16. Kawakami S, Harashima S, Kobayashi A, Fukui K (2006) Transformation of yeast using bioactive beads with surface-immobilized yeast artificial chromosomes. Methods Mol Biol 349:61–65PubMedGoogle Scholar
  17. Klebe RJ, Harriss JV, Sharp ZD, Douglas MG (1983) A general method for polyethylene-glycol-induced genetic transformation of bacteria and yeast. Gene 25:333–341PubMedCrossRefGoogle Scholar
  18. Polu AR, Kumar R (2011) Impedance spectroscopy and FTIR studies of PEG-based polymer electrolytes. E-J Chem 8:347–353CrossRefGoogle Scholar
  19. Razaonov DV, Strongin AY (2003) Membrane type-1 matrix metalloproteinase functions as a pro-protein self-convertase. J Biol Chem 278:8257–8260CrossRefGoogle Scholar
  20. Reddy A, Maley F (1993) Dithiothreitol improves the efficiency of yeast transformation. Anal Biochem 208:211–212PubMedCrossRefGoogle Scholar
  21. Scharstuhl A, Glansbeek H, Vitters EL, Van der Kraan PM, Van den Berg WB (2003) Large scaleprotein production of the extracellular domain of the transforming growthfactor-type II receptor using the Pichia pastoris expression system. J Chromatogr B 786:271–277CrossRefGoogle Scholar
  22. Schiestl RH, Manivasakam P, Woods RA, Gietz RD (1993) Introducing DNA into yeast by transformation. Methods 5:79–85CrossRefGoogle Scholar
  23. Smutok O, Dmytruk K, Gonchar M, Sibirny A, Schuhmann W (2007) Permeabilized cells of flavocytochrome b 2 over-producing recombinant yeast Hansenula polymorpha as biological recognition element in amperometric lactate biosensors. Biosens Bioelectron 23:599–605PubMedCrossRefGoogle Scholar
  24. Zaichenko AS, Voronov SA, Shevchuk OM, Vasilyev VP, Kuzayev AI (1997) Kinetic features and molecular weight characteristics of terpolymerization products of the systems based on vinyl acetate and 5-tert-butyl-peroxy-5-methyl-1-hexene-3-yne. J Appl Polym Sci 67:1061–1066CrossRefGoogle Scholar
  25. Zaichenko A, Mitina N, Kovbuz M, Artym I, Voronov S (2000) Surface-active metal-coordinated oligoperoxidic radical initiators. J Polym Sci A Polym Chem 38:516–527CrossRefGoogle Scholar
  26. Zaichenko A, Mitina N, Kovbuz M, Artym I, Voronov S (2001) Low-temperature surface-active complex-radical oligo(di-tert-alkyl) peroxide initiators and curing agents. Wiley-VCH 164:47–71Google Scholar
  27. Zhong Q, Chinta DM, Pamujula S, Wang H, Yao X, Mandal TK, Luftig RB (2010) Optimization of DNA delivery by three classes of hybrid nanoparticle/DNA complexes. J Nanobiotechnology 8:6PubMedCrossRefPubMedCentralGoogle Scholar
  28. Zlotnik H, Fernandez MP, Bowers B, Cahib E (1984) Saccharomyces cerevisiae mannoproteins from an external cell wall layer that determines wall porosity. J Bacteriol 159:1018–1026PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Yevhen Filyak
    • 1
  • Nataliya Finiuk
    • 1
  • Nataliya Mitina
    • 2
  • Alexander Zaichenko
    • 2
  • Rostyslav Stoika
    • 1
    Email author
  1. 1.Department of Regulation of Cell Proliferation and Apoptosis, Institute of Cell BiologyNational Academy of Sciences UkraineLvivUkraine
  2. 2.Department of Organic Chemistry, Institute of Chemistry and Chemical TechnologiesLviv Polytechnic UniversityLvivUkraine

Personalised recommendations