Protoplast Transformation for Genome Manipulation in Fungi

  • Aroa Rodriguez-Iglesias
  • Monika SchmollEmail author
Part of the Fungal Biology book series (FUNGBIO)


Fungi are organisms, which can serve as models for investigation of physiological processes and additionally, they have a high potential for industrial applications. In order to leverage their full potential, their genomes are modified for analysis of gene functions, elucidation of metabolic processes and also for their adjustment to biotechnological processes for efficient production of enzymes and metabolites. One of the most prominent methods for genome manipulation by transformation is protoplast transformation. In this review, we give an overview on prerequisites for protoplasting and transformation as well as methods and conditions for every single step as applied in diverse fungi. Thereby, we aim to provide a basis for troubleshooting with established methods and for development of new protocols to be applied to species for which transformation has not yet been achieved. Thereafter, we briefly summarize tools for enhanced efficiency of transformation, which have been applied in combination with protoplast transformation.


Genome modification Protoplast transformation Protoplasting Cell wall degradation Gene deletion Complementation Functional genomics 


  1. Adams DJ (2004) Fungal cell wall chitinases and glucanases. Microbiology 150:2029–2035PubMedGoogle Scholar
  2. Akins RA, Lambowitz AM (1985) General method for cloning Neurospora crassa nuclear genes by complementation of mutants. Mol Cell Biol 5:2272–2278PubMedPubMedCentralGoogle Scholar
  3. Altherr MR, Quinn LA, Kado CI, Rodroguez RL (1983) Transformation and storage of competent yeast cells. In: Lurquin P, Kleinhofs A (eds) Genetic engineering in eukaryotes, vol 61, 4th edn. Springer, New York, pp 33–36Google Scholar
  4. Ariko Y, Ito E (1975) A pathway of chitosan formation in Mucor rouxii. Enzymatic deacetylation of chitin. Eur J Biochem 55:71–78Google Scholar
  5. Auriol P (1974) On the polyosides of the cell walls of conidia and mycelia of Colletotrichum lagenarium Pass Ell and Halst. C R Seances Acad Sci 279(25):1867–1869Google Scholar
  6. Azizi M, Yakhchali B, Ghamarian A, Enayati S, Khodabandeh M, Khalaj V (2013) Cloning and expression of gumboro VP2 antigen in Aspergillus niger. Avicenna J Med Biotechnol 5:35–41PubMedPubMedCentralGoogle Scholar
  7. Bachmann BJ, Bonner DM (1959) Protoplasts from Neurospora crassa. J Bacteriol 78:550–556PubMedPubMedCentralGoogle Scholar
  8. Baker LG, Specht CA, Donlin MJ, Lodge JK (2007) Chitosan, the deacetylated form of chitin, is necessary for cell wall integrity in Cryptococcus neoformans. Eukaryot Cell 6:855–867PubMedPubMedCentralGoogle Scholar
  9. Balasubramanian N, Lalithakumari D (2008) Characteristics of protoplast inter, intra-fusant and regeneration of antagonistic fungi Trichoderma harzianum and Trichoderma viride. Afr J Biotechnol 7:18Google Scholar
  10. Balasubramanian N, Juliet GA, Srikalaivani P, Lalithakumari D (2003) Release and regeneration of protoplasts from the fungus Trichothecium roseum. Can J Microbiol 49:263–268PubMedGoogle Scholar
  11. Ballance DJ, Turner G (1985) Development of a high-frequency transforming vector for Aspergillus nidulans. Gene 36:321–331PubMedGoogle Scholar
  12. Ballou CE, Raschke WC (1974) Polymorphism of the somatic antigen of yeast. Science 184:127–134PubMedGoogle Scholar
  13. Barras DR (1972) A b-glucan endohydrolase from Schizosaccharomyces pombe and its role in cell wall growth. Antonie van Leeuwenhoek 38:65–80PubMedGoogle Scholar
  14. Bartnicki-Garcia S (1968) Cell wall chemistry, morphogenesis, and taxonomy of fungi. Annu Rev Microbiol 22:87–108PubMedGoogle Scholar
  15. Bartnicki-Garcia S (1970) Cell wall composition and other biochemical markers in fungal phylogeny. Academic, New YorkGoogle Scholar
  16. Beauvais A, Latgé J-P (2001) Membrane and cell wall targets in Aspergillus fumigatus. Drug Resist Updat 4:38–49PubMedGoogle Scholar
  17. Beauvais A, Maubon D, Park S, Morelle W, Tanguy M, Huerre M, Perlin DS, Latge JP (2005) Two alpha(1-3) glucan synthases with different functions in Aspergillus fumigatus. Appl Environ Microbiol 71:1531–1538PubMedPubMedCentralGoogle Scholar
  18. Becker DM, Lundblad V (1997) Introduction of DNA into yeast cells. In: Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K (eds) Current protocols, vol 2. Wiley, New YorkGoogle Scholar
  19. Becker DM, Lundblad V (2001) Introduction of DNA into yeast cells. In: Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA et al (eds) Current protocols in molecular biology. Wiley, New YorkGoogle Scholar
  20. Benitez T, Villa TG, Garcia Acha I (1976) Some chemical and structural features of the conidial wall of Trichoderma viride. Can J Microbiol 22:318–321PubMedGoogle Scholar
  21. Binninger DM, Skrzynia C, Pukkila PJ, Casselton LA (1987) DNA-mediated transformation of the basidiomycete Coprinus cinereus. EMBO J 6:835–840PubMedPubMedCentralGoogle Scholar
  22. Bird DM (1996) Transformation and gene targeting in Aspergillus nidulans. Microbiology and genetics. Massey University, Palmerston NorthGoogle Scholar
  23. Borkovich K, Ebbole DJ (eds) (2010) Cellular and molecular biology of filamentous fungi. APS, WashingtonGoogle Scholar
  24. Braun PC, Calderone RA (1978) Chitin synthesis in Candida albicans. Comparison of yeast and hyphal forms. J Bacteriol 133:1472–1477PubMedPubMedCentralGoogle Scholar
  25. Brown JP (1971) Susceptibility of the cell walls of some yeasts to lysis by enzymes of Helix pomatia. Can J Microbiol 17:205–208PubMedGoogle Scholar
  26. Brygoo Y, Debuchy R (1985) Transformation by integration in Podospora anserina. 1. Methodology and phenomenology. Mol Gen Genet 200:128–131Google Scholar
  27. Burton RA, Fincher GB (2009) (1,3;1,4)-β-D-glucans in cell walls of the poaceae, lower plants, and fungi: a tale of two linkages. Mol Plant 2:873–882PubMedGoogle Scholar
  28. Buxton FP, Radford A (1984) The transformation of mycelial spheroplasts of Neurospora crassa and the attempted isolation of an autonomous replicator. Mol Gen Genet 196:337–344Google Scholar
  29. Cabib E, Roh D-H, Schmidt M, Crotti LB, Varma A (2001) The yeast cell wall and septum as paradigms of cell growth and morphogenesis. J Biol Chem 276:19679–19682PubMedGoogle Scholar
  30. Calderone RA, Braun PC (1991) Adherence and receptor relationships of Candida albicans. Microbiol Rev 55:1–20PubMedPubMedCentralGoogle Scholar
  31. Cardoza RE, Vizcaino JA, Hermosa MR, Monte E, Gutierrez S (2006) A comparison of the phenotypic and genetic stability of recombinant Trichoderma spp. generated by protoplast- and Agrobacterium-mediated transformation. J Microbiol 44:383–395PubMedGoogle Scholar
  32. Case ME, Schweizer M, Kushner SR, Giles NH (1979) Efficient transformation of Neurospora crassa by utilizing hybrid plasmid DNA. Proc Natl Acad Sci U S A 76:5259–5263PubMedPubMedCentralGoogle Scholar
  33. Catalano V, Vergara M, Hauzenberger JR, Seiboth B, Sarrocco S, Vannacci G, Kubicek CP, Seidl-Seiboth V (2011) Use of a non-homologous end-joining-deficient strain (delta-ku70) of the biocontrol fungus Trichoderma virens to investigate the function of the laccase gene lcc1 in sclerotia degradation. Curr Genet 57:13–23PubMedPubMedCentralGoogle Scholar
  34. Cheng Y, Belanger RR (2000) Protoplast preparation and regeneration from spores of the biocontrol fungus Pseudozyma flocculosa. FEMS Microbiol Lett 190:287–291PubMedGoogle Scholar
  35. Collinge AJ, Trinci APJ (1974) Hyphal tips of wild-type and spreading colonial mutants of Neurospora crassa. Arch Microbiol 99:353–368PubMedGoogle Scholar
  36. Collopy PD, Colot HV, Park G, Ringelberg C, Crew CM, Borkovich KA, Dunlap JC (2010) High-throughput construction of gene deletion cassettes for generation of Neurospora crassa knockout strains. Methods Mol Biol 638:33–40PubMedPubMedCentralGoogle Scholar
  37. Colot HV, Park G, Turner GE, Ringelberg C, Crew CM, Litvinkova L, Weiss RL, Borkovich KA, Dunlap JC (2006) A high-throughput gene knockout procedure for Neurospora reveals functions for multiple transcription factors. Proc Natl Acad Sci U S A 103:10352–10357PubMedPubMedCentralGoogle Scholar
  38. Cutler JE (2001) N-glycosylation of yeast, with emphasis on Candida albicans. Med Mycol 1:75–86Google Scholar
  39. Das S, Kellermann E, Hollenberg CP (1984) Transformation of Kluyveromyces fragilis. J Bacteriol 158:1165–1167PubMedPubMedCentralGoogle Scholar
  40. Datema R, Van den Ende H, Wessels JH (1977a) The hyphal wall of Mucor mucedo 1. Polyanionic polymers. Eur J Biochem 80:611–619PubMedGoogle Scholar
  41. Datema R, Wessels JH, van den Ende H (1977b) The hyphal wall of Mucor mucedo 2. Hexosamine containing polymers. Eur J Biochem 80:621–626PubMedGoogle Scholar
  42. Davis LL, Bartnicki-Garcia S (1984) Chitosan synthesis by the tandem action of chitin synthetase and chitin deacetylase from Mucor rouxii. Biochem J 23:1065–1068Google Scholar
  43. De Bekker C, Wiebenga A, Aguilar G, Wosten HA (2009) An enzyme cocktail for efficient protoplast formation in Aspergillus niger. J Microbiol Methods 76:305–306PubMedGoogle Scholar
  44. De Borba CM, Meirelles MN, Da Silva AM, De Oliveira PC (1994) Paracoccidioides brasiliensis protoplast production by enzymatic treatment. Mycoses 37:317–323Google Scholar
  45. de Groot MJ, Bundock P, Hooykaas PJ, Beijersbergen AG (1998) Agrobacterium tumefaciens-mediated transformation of filamentous fungi. Nat Biotechnol 16:839–842PubMedGoogle Scholar
  46. de Groot PW, Yin QY, Weig M, Sosinska GJ, Klis FM, de Koster CG (2007) Mass spectrometric identification of covalently bound cell wall proteins from the fission yeast Schizosaccharomyces pombe. Yeast 24:267–278PubMedGoogle Scholar
  47. Demain AL, Newkirk JF (1962) Biosynthesis of cephalosporin C. Appl Microbiol 10:321–325PubMedPubMedCentralGoogle Scholar
  48. Demain AL, Newkirk JF, Hendlin D (1963) Effect of methionine, norleucine and lysine derivatives on cephalosporin C formation in chemically defined media. J Bacteriol 85:339–344PubMedPubMedCentralGoogle Scholar
  49. Deutch CE, Parry JM (1974) Sphaeroplast formation in yeast during the transition from exponential phase to stationary phase. J Gen Microbiol 80:259–268Google Scholar
  50. Dhawale S, Paietta J, Marzluf G (1984) A new, rapid and efficient transformation procedure for Neurospora. Curr Genet 8:77–79PubMedGoogle Scholar
  51. Díez B, Alvarez E, Cantoral JM, Barredo JL, Martín JF (1987) Selection and characterization of pyrG mutants of Penicillium chrysogenum lacking orotidine-5′-phosphate decarboxylase and complementation by the pyr4 gene of Neurospora crassa. Curr Genet 12:277–282Google Scholar
  52. Dziengel A, Held W, Schlanderer G, Dellweg H (1977) Eur J Appl Microbiol 4:21–27Google Scholar
  53. Eddy AA, Williamson DH (1959) Formation of aberrant cell walls and of spores by the growing yeast protoplast. Nature 183:1101–1104PubMedGoogle Scholar
  54. Ellis DH, Griffiths DA (1974) The location and analysis of melanins in the cell walls of some soil fungi. Can J Microbiol 20:1379–1386Google Scholar
  55. Eppendorf (2002) Protocol Ustilago maydis No. 4308 91. Eppendorf AG, HamburgGoogle Scholar
  56. Ezeronye OU, Okerentugba PO (2001) Optimum conditions for yeast protoplast release and regeneration in Saccharomyces cerevisiae and Candida tropicalis using gut enzymes of the giant African snail Achatina achatina. Lett Appl Microbiol 32:190–193PubMedGoogle Scholar
  57. Fariña JI, Siñeriz F, Molina OE, Perotti NI (1998) High scleroglucan production by Sclerotium rolfsii: influence of medium composition. Biotechnol Lett 20:825–831Google Scholar
  58. Farkas V (1979) Biosynthesis of cell walls of fungi. Microbiol Rev 43:117–144PubMedPubMedCentralGoogle Scholar
  59. Fawcett PA, Loder PB, Duncan MJ, Beesley TJ, Abraham EP (1973) Formation and properties of protoplasts from antibiotic-producing strains of Penicillium chrysogenum and Cephalosporium acremonium. J Gen Microbiol 79:293–309PubMedGoogle Scholar
  60. Fevre M (1977) Subcellular localization of glucanase and cellulase in Saprolegnia monoica Pringsheim. J Gen Microbiol 103:287–295Google Scholar
  61. Fincham JR (1989) Transformation in fungi. Microbiol Rev 53:148–170PubMedPubMedCentralGoogle Scholar
  62. Flanagan WP, Klei HE, Sundstrom DW, Lawton CW (1990) Optimization of a pellicular biocatalyst for penicillin G production by Penicillium chrysogenum. Biotechnol Bioeng 36:608–616PubMedGoogle Scholar
  63. Fleet GH (1991) Cell walls. In: Rose AH, Harrisson JD (eds) The yeast, vol 4. Academic, New York, pp 199–277Google Scholar
  64. Fleet GH, Phaff HJ (1974) Glucanases in Schizosaccharomyces. Isolation and properties of the cell wall associated b-(1-3)-glucanases. J Biol Chem 249:1717–1928PubMedGoogle Scholar
  65. Fontaine T, Simenel C, Dubreucq G, Adam O, Delepierre M, Lemoine J, Vorgias CE, Diaquin M, Latge JP (2000) Molecular organization of the alkali-insoluble fraction of Aspergillus fumigatus cell wall. J Biol Chem 275:27594–27607PubMedGoogle Scholar
  66. Forsburg SL (2003) Introduction of DNA into S. pombe Cells. In Current protocols in molecular biology. Wiley.
  67. Foury F, Golfeau A (1973) J Gen Microbial 75:227–229Google Scholar
  68. Gallmetzer M, Burgstaller W, Schinner F (1999) An optimized method for the isolation of protoplasts from Penicillium simplicissimum to produce sealed plasma membrane vesicles. Mycologia 91:206–212Google Scholar
  69. Gander JE (1974) Fungal cell wall glycoproteins and peptido-polysaccharides. Annu Rev Microbiol 28:103–119PubMedGoogle Scholar
  70. Gietz RD, Schiestl RH (2007) Quick and easy yeast transformation using the LiAc/SS carrier DNA/PEG method. Nat Protoc 2:35–37PubMedGoogle Scholar
  71. Gooday GW (1977) Biosynthesis of the fungal cell wall-mechanism and implications. J Gen Microbiol 99:1–11PubMedGoogle Scholar
  72. Gooday GW (1995) Cell walls (3). In: Gow NR, Gadd G (eds) The growing fungus. Springer, Netherlands, pp 43–62Google Scholar
  73. Goswami RS (2012) Targeted gene replacement in fungi using a split-marker approach. In: Bolton MD, Thomma BPHJ (eds) Plant fungal pathogens, vol 835, 16th edn. Humana, New York, pp 255–269Google Scholar
  74. Goyon C, Faugeron G (1989) Targeted transformation of Ascobolus immersus and de novo methylation of the resulting duplicated DNA sequences. Mol Cell Biol 9:2818–2827PubMedPubMedCentralGoogle Scholar
  75. Grallert B, Nurse P, Patterson TE (1993) A study of integrative transformation in Schizosaccharomyces pombe. Mol Gen Genet 238:26–32PubMedGoogle Scholar
  76. Gruber S, Seidl-Seiboth V (2012) Self versus non-self: fungal cell wall degradation in Trichoderma. Microbiology 158:26–34PubMedGoogle Scholar
  77. Gruber F, Visser J, Kubicek CP, Graaff LH (1990) The development of a heterologous transformation system for the cellulolytic fungus Trichoderma reesei based on a pyrG-negative mutant strain. Curr Genet 18:71–76PubMedGoogle Scholar
  78. Grün CH, Hochstenbach F, Humbel BM, Verkleij AJ, Sietsma JH, Klis FM, Kamerling JP, Vliegenthart JF (2005) The structure of cell wall alpha-glucan from fission yeast. Glycobiology 15:245–257PubMedGoogle Scholar
  79. Guangtao Z, Hartl L, Schuster A, Polak S, Schmoll M, Wang T, Seidl V, Seiboth B (2009) Gene targeting in a nonhomologous end joining deficient Hypocrea jecorina. J Biotechnol 139:146–151PubMedGoogle Scholar
  80. Hamlyn PF, Bradshaw RE, Mellon FM, Santiago CM, Wilson JM, Peberdy JF (1981) Efficient protoplast isolation from fungi using commercial enzymes. Enzyme Microb Technol 3:321–325Google Scholar
  81. Harrier LA, Millam S (2001) Biolistic transformation of arbuscular mycorrhizal fungi. Mol Biotechnol 18:25–33PubMedGoogle Scholar
  82. Hazen KC (1990) Cell surface hydrophobicity of medically important fungi, especially Candida species. In: Doyle RJ, Rosenberg M (eds) Microbial cell surface hydrophobicity. American Society for Microbiology, Washington, pp 249–295Google Scholar
  83. Hinnen A, Hicks JB, Fink GR (1978) Transformation of yeast chimaeric ColEl plasmid carrying LEU2. Proc Natl Acad Sci U S A 75:1929–1933PubMedPubMedCentralGoogle Scholar
  84. Hochstenbach F, Klis FM, Van den Ende H, Van Donselaar E, Peters PJ, Klausner RD (1998) Identification of a putative alpha-glucan synthase essential for cell wall construction and morphogenesis in fission yeast. Proc Natl Acad Sci U S A 95:9161–9166PubMedPubMedCentralGoogle Scholar
  85. Hunsley D (1973) Apical wall structure in hyphae of Phytophthora parasitica. New Phytol 72:985–990Google Scholar
  86. Hunsley D, Gooday GW (1974) The structure and development of septa in Neurospora crassa. Protoplasma 82:125–146PubMedGoogle Scholar
  87. Hunsley D, Kay D (1976) Wall structure of Neurospora hyphal apex-immunofluorescent localization of wall surface antigens. J Gen Microbiol 95:233–248Google Scholar
  88. Hutchison HT, Hartwell LH (1967) Macromolecule synthesis in yeast spheroplasts. J Bacteriol 94:1697–1705PubMedPubMedCentralGoogle Scholar
  89. Ito H, Fukuda Y, Murata K, Kimura A (1983) Transformation of intact yeast cells treated with alkali cations. J Bacteriol 153:163–168PubMedPubMedCentralGoogle Scholar
  90. Jan YN (1974) Properties and cellular localization of chitin synthetase in Phycomyces blakesleanus. J Biol Chem 249:1973–1979Google Scholar
  91. Jensen AB, Aronstein K, Flores JM, Vojvodic S, Palacio MA, Spivak M (2013) Standard methods for fungal brood disease research. J Apic Res 52:13Google Scholar
  92. Jimenez J (1991) Cryopreservation of competent Schizosaccharomyces pombe protoplasts. Trends Genet 7:40PubMedGoogle Scholar
  93. Kapteyn JC, Hoyer LL, Hecht JE, Muller WH, Andel A, Verkleij AJ, Makarow M, Van Den Ende H, Klis FM (2000) The cell wall architecture of Candida albicans wild-type cells and cell wall-defective mutants. Mol Microbiol 35:601–611PubMedGoogle Scholar
  94. Kelly FD, Nurse P (2011) De Novo growth zone formation from fission yeast spheroplasts. PLoS One 6:e27977PubMedPubMedCentralGoogle Scholar
  95. Kim BK, Kang JH, Jin M, Kim HW, Shim MJ, Choi EC (2000) Mycelial protoplast isolation and regeneration of Lentinus lepideus. Life Sci 66:1359–1367PubMedGoogle Scholar
  96. Kinsey JA, Rambosek JA (1984) Transformation of Neurospora crassa with the cloned am (glutamate dehydrogenase) gene. Mol Cell Biol 4:117–122PubMedPubMedCentralGoogle Scholar
  97. Klis FM, Mol P, Hellingwerf K, Brul S (2002) Dynamics of cell wall structure in Saccharomyces cerevisiae. FEMS Microbiol Rev 26:239–256PubMedGoogle Scholar
  98. Klis FM, Boorsma A, De Groot PWJ (2006) Cell wall construction in Saccharomyces cerevisiae. Yeast 23:185–202PubMedGoogle Scholar
  99. Kollar R, Petrakova E, Ashwell G, Robbins PW, Cabib E (1995) Architecture of the yeast cell wall. The linkage between chitin and b(1,3)-glucan. J Biol Chem 270:1170–1178PubMedGoogle Scholar
  100. Kollar R, Reinhold BB, Petrakova E, Yeh HJ, Ashwell G, Drgonova J, Kapteyn JC, Klis FM, Cabib E (1997) Architecture of the yeast cell wall. b(1-6)-glucan interconnects mannoprotein, b(1-)3-glucan, and chitin. J Biol Chem 272:17762–17775PubMedGoogle Scholar
  101. Kubicek CP, Harman GE (1998) Trichoderma and gliocadium, basic biology, taxonomy and genetics, vol 1. CRC, LondonGoogle Scholar
  102. Kusters-van Someren MA, Harmsen JA, Kester HC, Visser J (1991) Structure of the Aspergillus niger pelA gene and its expression in Aspergillus niger and Aspergillus nidulans. Curr Genet 20:293–299PubMedGoogle Scholar
  103. Lalithakumari D (1996) Protoplasts—a biotechnological tool for plant pathological studies. Ind Phytopathol 49:199–212Google Scholar
  104. Lampen J (1968) External enzymes of yeast: their nature and formation. Antonie van Leeuwenhoek 34:1–18PubMedGoogle Scholar
  105. Latgé J-P (2007) The cell wall: a carbohydrate armour for the fungal cell. Mol Microbiol 66:279–290PubMedGoogle Scholar
  106. Lenardon MD, Munro CA, Gow NAR (2010) Chitin synthesis and fungal pathogenesis. Curr Opin Microbiol 13:416–423PubMedPubMedCentralGoogle Scholar
  107. Lesage G, Bussey H (2006) Cell wall assembly in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 70:317–343PubMedPubMedCentralGoogle Scholar
  108. Limura Y, Gotoh K, Ouchi K, Nishima T (1983) Transformation of yeast without the spheroplasting process. Agric Biol Chem 47:897–901Google Scholar
  109. Liu Z, Friesen TL (2012) Polyethylene glycol (PEG)-mediated transformation in filamentous fungal pathogens. Methods Mol Biol 835:365–375PubMedGoogle Scholar
  110. Liu TH, Lin MJ, Ko WH (2010) Factors affecting protoplast formation by Rhizoctonia solani. N Biotechnol 27:64–69PubMedGoogle Scholar
  111. Lowman DW, Ferguson DA, Williams DL (2003) Structural characterization of (1-3)-β-d-glucans isolated from blastospore and hyphal forms of Candida albicans. Carbohydr Res 338:1491–1496PubMedGoogle Scholar
  112. Macdonald KD, Hutchinson JM, Gillett WA (1963) Isolation of auxotrophs of Penicillium chrysogenum and their penicillin yields. J Gen Microbiol 33:365–374PubMedGoogle Scholar
  113. Malonek S, Meinhardt F (2001) Agrobacterium tumefaciens-mediated genetic transformation of the phytopathogenic ascomycete Calonectria morganii. Curr Genet 40:152–155PubMedGoogle Scholar
  114. Mania D, Hilpert K, Ruden S, Fischer R, Takeshita N (2010) Screening for antifungal peptides and their modes of action in Aspergillus nidulans. Appl Environ Microbiol 76:7102–7108PubMedPubMedCentralGoogle Scholar
  115. Martin JF, Nicolas G, Villanueva JR (1973) Chemical changes in the cell walls of conidia of Penicillium notatum during germination. Can J Microbiol 19:789–796PubMedGoogle Scholar
  116. Mautino MR, Barra JL, Rosa AL (1996) eth-1, the Neurospora crassa locus encoding S-adenosylmethionine synthetase: molecular cloning, sequence analysis and in vivo overexpression. Genetics 142:789–800PubMedPubMedCentralGoogle Scholar
  117. Meyer V (2008) Genetic engineering of filamentous fungi: progress, obstacles and future trends. Biotechnol Adv 26:177–185PubMedGoogle Scholar
  118. Meyer V, Mueller D, Strowig T, Stahl U (2003) Comparison of different transformation methods for Aspergillus giganteus. Curr Genet 43:371–377PubMedGoogle Scholar
  119. Michielse CB, Hooykaas PJ, Van den Hondel CA, Ram AF (2005) Agrobacterium-mediated transformation as a tool for functional genomics in fungi. Curr Genet 48:1–17PubMedGoogle Scholar
  120. Mol PC, Wessels JGH (1990) Differences in wall structure between substrate hyphae and hyphae of fruit-body stipes in Agaricus bisporus. Mycol Res 94:472–479Google Scholar
  121. Molano J, Bowers B, Cabib E (1980) Distribution of chitin in the yeast cell wall. An ultrastructural and chemical study. Cell BioI 261:15147–15152Google Scholar
  122. Mullins ED, Kang S (2001) Transformation: a tool for studying fungal pathogens of plants. Cell Mol Life Sci 58:2043–2052PubMedGoogle Scholar
  123. Munoz-Rivas A, Specht CA, Drummond BJ, Froeliger E, Novotny CP, Ullrich RC (1986) Transformation of the basidiomycete Schizophyllum commune. Mol Gen Genet 205:103–106PubMedGoogle Scholar
  124. Naseema A, Dhanya B, AnjanadeviI P, Sheena KG, Alex S (2008) Isolation and regeneration of protoplasts from the mycelium of Fusarium pallidoroseum—a potential biocontrol agent of water hyacinth [Eichhornia crassipes (Mart.) Solms]. J Trop Agric 46(1–2):67–69Google Scholar
  125. Nea LJ, Bates GW (1987) Factors affecting protoplast electrofusion efficiency. Plant Cell Rep 6:337–340PubMedGoogle Scholar
  126. Necas O (1971) Cell wall synthesis in yeast protoplasts. Bacteriol Rev 35:149–170PubMedPubMedCentralGoogle Scholar
  127. Nimrichter L, Rodrigues ML, Rudrigues EG, Travassos LR (2005) The multitude targets for the inmune system and drug therapy in the fungal cell wall. Microbes Infect 7:789–798PubMedGoogle Scholar
  128. Okerentugba PO (1984) Production and genetic analysis of hybrid strains of Saccharomyces cerevisiae by spheroplast fusion. PhD thesis, University of Strathclyde, GlasgowGoogle Scholar
  129. Olmedo-Monfil V, Cortés-Penagos C, Herrera-Estrella A (2004) Three decades of fungal transformation. In: Balbás P, Lorence A (eds) Recombinant gene expression, vol 267, 21st edn. Humana, New York, pp 297–313Google Scholar
  130. Park G, Servin JA, Turner GE, Altamirano L, Colot HV, Collopy P, Litvinkova L, Li L, Jones CA, Diala F-G, Dunlap JC, Borkovich KA (2011) Global analysis of serine-threonine protein kinase genes in Neurospora crassa. Eukaryot Cell 10:1553–1564PubMedPubMedCentralGoogle Scholar
  131. Partridge BM, Drew JA (1974) Candida protoplasts and their ultrastructure. Sabouraudia 12:166–178PubMedGoogle Scholar
  132. Peberdy JF (1979) Fungal protoplasts: isolation, reversion, and fusion. Annu Rev Microbiol 33:21–39PubMedGoogle Scholar
  133. Penttilä M, Nevalainen H, Rättö M, Salminen E, Knowles J (1987) A versatile transformation system for the cellulolytic filamentous fungus Trichoderma reesei. Gene 61:155–164PubMedGoogle Scholar
  134. Perez P, Ribas JC (2004) Cell wall analysis. Methods 33:245–251PubMedGoogle Scholar
  135. Peterson EM, Hawley RJ, Calderone RA (1976) An ultrastructural analysis of protoplast-spheroplast induction in Cryptococcus neoformans. Can J Microbiol 22:1518–1521PubMedGoogle Scholar
  136. Pettolino F, Sasaki I, Turbic A, Wilson SM, Bacic A, Hrmova M, Fincher GB (2009) Hyphal cell walls from the plant pathogen Rhynchosporium secalis contain β(1,3/1,6)-D-glucans, galacto- and rhamnomannans, β(1,3/1,4)-D-glucans and chitin. FEBS J 276:3698–3709PubMedGoogle Scholar
  137. Phaff HJ (1971) Structure and biosynthesis of the yeast cell envelope, vol 2. Academic, New YorkGoogle Scholar
  138. Picard M, Debuchy R, Julien J, Brygoo Y (1987) Transformation by integration in Podospora anserina. Mol Gen Genet 210:129–134Google Scholar
  139. Polacheck Y, Rosenberger RF (1975) Autolytic enzymes in hyphae of Aspergillus nidulans: their action on old and newly formed walls. J Bacteriol 121:332–337PubMedPubMedCentralGoogle Scholar
  140. Pontecorvo G, Roper JA, Hemmons LM, MacDonald KD, Bufton AWJ (1953) The genetics of Aspergillus nidulans. Adv Genet 5:141–238PubMedGoogle Scholar
  141. Pratt RJ, Aramayo R (2002) Improving the efficiency of gene replacements in Neurospora crassa: a first step towards a large-scale functional genomics project. Fungal Genet Biol 37:56–71PubMedGoogle Scholar
  142. Radford A, Pope S, Sazci A, Fraser MJ, Parish JH (1981) Liposome-mediated genetic transformation of Neurospora crassa. Mol Gen Genet 184:567–569PubMedGoogle Scholar
  143. Roncero C (2002) The genetic complexity of chitin synthesis in fungi. Curr Genet 41:367–378PubMedGoogle Scholar
  144. Ruiz-Díez B (2001) Strategies for the transformation of filamentous fungi. J Appl Microbiol 92:189–195Google Scholar
  145. Ruiz-Herrera J, Leon CG, Carabez-Trejo A, Reyes-Salinas E (1996) Structure and chemical composition of the cell walls from the haploid yeast and mycelial forms of Ustilago maydis. Fungal Genet Biol 20:133–142PubMedGoogle Scholar
  146. Santos TMC, De Melo IS (1991) Preparation and regeneration of protoplasts of Talaromyces flavus. Rev Bras Genet 14:335–340Google Scholar
  147. Savitha S, Sadhasivam S, Swaminathan K (2010) Regeneration and molecular characterization of an intergeneric hybrid between Graphium putredinis and Trichoderma harzianum by protoplasmic fusion. Biotech Adv 28:285–292Google Scholar
  148. Schuster A, Bruno KS, Collett JR, Baker SE, Seiboth B, Kubicek CP, Schmoll M (2012) A versatile toolkit for high throughput functional genomics with Trichoderma reesei. Biotechnol Biofuels 5:1754–6834Google Scholar
  149. Schweizer M, Case ME, Dykstra CC, Giles NH, Kushner SR (1981) Identification and characterization of recombinant plasmids carrying the complete qa gene cluster from Neurospora crassa including the qa-1þ regulatory gene. Proc Natl Acad Sci U S A 78:5086–5090PubMedPubMedCentralGoogle Scholar
  150. Seiler S, Plamann M (2003) The genetic basis of cellular morphogenesis in the filamentous fungus Neurospora crassa. Mol Biol Cell 14:4352–4364PubMedPubMedCentralGoogle Scholar
  151. Selitrennikof CP, Sachs MS (1991) Lipofectin increases the efficiency of DNA-mediated transformation of Neurospora crassa. Fungal Genet Newsl 38:90–91Google Scholar
  152. Selitrennikoff CP, Nakata M (2003) New cell wall targets for antifungal drugs. Curr Opin Investig Drugs 4:200–205PubMedGoogle Scholar
  153. Shahin MM (1972) Relationship between yield of protoplasts and growth phase in Saccharomyces. J Bacteriol 110:769–771PubMedPubMedCentralGoogle Scholar
  154. Shahinian S, Bussey H (2000) b(1,6)-Glucan synthesis in Saccharomyces cerevisiae. Mol Microbiol 35:477–489PubMedGoogle Scholar
  155. Sheu YJ, Barral Y, Snyder M (2000) Polarized growth controls cell shape and bipolar bud site selection in Saccharomyces cerevisiae. Mol Cell Biol 20:5235–5247PubMedPubMedCentralGoogle Scholar
  156. Shibata N, Suzuki A, Kobayashi H, Okawa Y (2007) Chemical structure of the cell-wall mannan of Candida albicans serotype A and its difference in yeast and hyphal forms. Biochem J 404:365–372PubMedPubMedCentralGoogle Scholar
  157. Sietsma JH, Wessels JGH (1990) The occurrence of glucosaminoglycan in the wall of Schizosaccharomyces pombe. Gen Microbiol 136:2261–2265Google Scholar
  158. Singh H, Bieker JJ, Dumas LB (1982) Genetic transformation of Saccharomyces cerevisiae with single-stranded circular DNA vectors. Gene 20:441–449PubMedGoogle Scholar
  159. Steiger MG (2013) Molecular tools in Trichoderma genetic studies. In: Mukherjee PK, Horwitz BA, Singh US, Mukherjee M, Schmoll M (eds) Trichoderma: biology and applications. CABI, WalllingfordGoogle Scholar
  160. Sugawara T, Takahashi S, Osumi M, Ohno N (2004) Refinement of the structures of cell-wall glucans of Schizosaccharomyces pombe by chemical modification and NMR spectroscopy. Carbohydr Res 339:2255–2265PubMedGoogle Scholar
  161. Sukumar M, Sundar M, Sivarajan M (2010) Penicillin production from transformed protoplast of Penicillium chrysogenum by fermentation. Ferment J Pharmacogenom Pharmacoproteomics 1:102Google Scholar
  162. Sun S, Furtula V, Nothnagel EA (1992) Mechanical release and lectin labeling of maize root protoplasts. Protoplasma 169:49–56Google Scholar
  163. Sun JQ, Yu HY, Zhang P, Zhang YF, Ling HB, Xie YH, Zhou DP, Ping WX (2001) The formation and regeneration of Nodulisporium sylviforme protoplast. Chin J Appl Environ Biol 7:375–381Google Scholar
  164. Tilburn J, Scazzocchio C, Taylor GG, Zabicky-Zissman JH, Lockington RA, Davies RW (1983) Transformation by integration in Aspergillus nidulans. Gene 26:205–221PubMedGoogle Scholar
  165. Tomo N, Goto T, Morikawa Y (2013) Trans-packaging of human immunodeficiency virus type 1 genome into Gag virus-like particles in Saccharomyces cerevisiae. Microb Cell Fact 12:28PubMedPubMedCentralGoogle Scholar
  166. Trinci APJ (1978) Wall and hyphal growth. Sci Prog London 65:75–99Google Scholar
  167. Trinci APJ, Coolinge AJ (1975) Hyphal wall growth in Neurospora crassa and Geotrichium candidum. J Gen Microbiol 91:355–361PubMedGoogle Scholar
  168. Vaishnav VV, Bacon BE, O’Neill M, Cherniak R (1998) Structural characterization of the galactoxylomannan of Cryptococcus neoformans Cap67. Carbohydr Res 306:315–330PubMedGoogle Scholar
  169. Villanueva JR (1966) Protoplasts of fungi. In: Ainsworth GC, Sussman AE (eds) The fungi, vol 2. Academic, New York, pp 3–62Google Scholar
  170. Vollmer SJ, Yanofsky C (1986) Efficient cloning of genes of Neurospora crassa. Proc Natl Acad Sci U S A 83:4869–4873PubMedPubMedCentralGoogle Scholar
  171. Von Klercker J (1982) Eine Methode zur isolier lebender protoplasten. Ofvers Vetensk Akad Forhandl 49:463–474Google Scholar
  172. Waard MA (1976) Formation of protoplasts from Ustilago maydis. Antonie Van Leeuwenhoek 42:211–216PubMedGoogle Scholar
  173. Wessels JGH (1994) Developmental regulation of fungal cell wall formation. Annu Rev Phytopathol 32:413–437Google Scholar
  174. Whittaker PA, Andrews KR (1969) Protoplast production in haploid Saccharomyces cerevisiae and petite mutants of this yeast. Microbios 1(1B):99–104Google Scholar
  175. Whittaker SL, Lunness P, Milward KJ, Doonan JH, Assinder SJ (1999) sodVIC is an alpha-COP-related gene which is essential for establishing and maintaining polarized growth in Aspergillus nidulans. Fungal Genet Biol 26:236–252PubMedGoogle Scholar
  176. Zhou X, Wei Y, Zhu H, Wang Z, Lin J, Liu L, Tang K (2008) Protoplast formation, regeneration and transformation form the taxol-producing fungus Ozonium sp. Afr J Biotechnol 7:2017–2024Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of Health and Environment—BioresourcesAIT Austrian Institute of TechnologyTullnAustria

Personalised recommendations