High Efficiency DNA Transformation of Saccharomyces cerevisiae with the LiAc/SS-DNA/PEG Method

  • R. Daniel GietzEmail author
Part of the Fungal Biology book series (FUNGBIO)


The ability to transform DNA into an organism is an essential element that aids greatly in many molecular and genetic studies. In Saccharomyces cerevisiae numerous methods can be used to accomplish this task; however, the LiAc/ssDNA/PEG methods are presented here. Methods for various applications are listed including a method for transformation in 96 well microtiter plate format as well as a method for the production and transformation of frozen competent yeast cells.


Saccharomyces cerevisiae DNA uptake Lithium acetate Polyethylene glycol Transformation 


  1. Beggs JD (1978) Transformation of yeast by a replicating hybrid plasmid. Nature 275:104–109PubMedCrossRefGoogle Scholar
  2. Brachmann CB, Davies A, Cost GJ, Caputo E, Li J, Hieter P, Boeke JD (1998) Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications. Yeast 14:115–132PubMedCrossRefGoogle Scholar
  3. Chen P, Liu HH, Cui R, Zhang ZL, Pang DW, Xie ZX, Zheng HZ, Lu ZX, Tong H (2008) Visualized investigation of yeast transformation induced with Li + and polyethylene glycol. Talanta 77:262–268PubMedCrossRefGoogle Scholar
  4. Gietz RD (2006) Yeast two-hybrid system screening. In: Xiao W (ed) Methods in Molecular Biology, Yeast Protocols, vol 313. Humana Press, Totowa, NJ, pp 345–371CrossRefGoogle Scholar
  5. Gietz RD, Schiestl RH (2007a) Quick and easy yeast transformation using the LiAc/SS carrier DNA/PEG method. Nat Protoc 2:35–37PubMedCrossRefGoogle Scholar
  6. Gietz RD, Schiestl RH (2007b) High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method. Nat Protoc 2:31–34PubMedCrossRefGoogle Scholar
  7. Gietz RD, Schiestl RH (2007c) Microtiter plate transformation using the LiAc/SS carrier DNA/PEG method. Nat Protoc 2:5–8PubMedCrossRefGoogle Scholar
  8. Gietz RD, Schiestl RH (2007d) Frozen competent yeast cells that can be transformed with high efficiency using the LiAc/SS carrier DNA/PEG method. Nat Protoc 2:1–4PubMedCrossRefGoogle Scholar
  9. Gietz RD, Woods RA (2001) Genetic transformation of yeast. Biotechniques 30:816–820PubMedGoogle Scholar
  10. Gietz RD, Woods RA (2006) Yeast transformation by the LiAc/SS Carrier DNA/PEG method. Methods Mol Biol 313:107–120PubMedGoogle Scholar
  11. Gietz RD, St. Jean A, Woods RA, Schiestl RH (1992) Improved method for high efficiency transformation of intact yeast cells. Nucleic Acids Res 20(6):1425PubMedCrossRefPubMedCentralGoogle Scholar
  12. Gietz RD, Schiestl RH, Willems AR, Woods RA (1995) Studies on the transformation of intact yeast cells by the LiAc/SS-DNA/PEG procedure. Yeast 11:355–360PubMedCrossRefGoogle Scholar
  13. Griffith F (1928) The significance of pneumococcal types. J Hyg (Lond) 27:113–159CrossRefGoogle Scholar
  14. Hayama Y, Fukuda Y, Kawai S, Hashimoto W, Murata K (2002) Extremely simple, rapid and efficient transformation method for the yeast Saccharomyces cerevisiae using glutathione and early log phase cells. J Biosci Bioeng 94:166–171PubMedCrossRefGoogle Scholar
  15. Hinnen A, Hicks JB, Fink GR (1978) Transformation of yeast. Proc Natl Acad Sci U S A 75:1929–1933PubMedCrossRefPubMedCentralGoogle Scholar
  16. Huh WK, Falvo JV, Gerke LC, Carroll AS, Howson RW, Weissman JS, O’Shea EK (2003) Global analysis of protein localization in budding yeast. Nature 16:686–691CrossRefGoogle Scholar
  17. Ito H, Fukuda Y, Murata K, Kimura A (1983) Transformation of intact yeast cells treated with alkali cations. J Bacteriol 153:163–168PubMedPubMedCentralGoogle Scholar
  18. Kawai S, Pham TA, Nguyen HT, Nankai H, Utsumi T, Fukuda Y, Murata K (2004) Molecular insights on DNA delivery into Saccharomyces cerevisiae. Biochem Biophys Res Commun 317:100–107PubMedCrossRefGoogle Scholar
  19. Kawai S, Phan TA, Kono E, Harada K, Okai C, Fukusaki E, Murata K (2009) Transcriptional and metabolic response in yeast Saccharomyces cerevisiae cells during polyethylene glycol-dependent transformation. J Basic Microbiol 49:73–81PubMedCrossRefGoogle Scholar
  20. Kawai S, Hashimoto W, Murata K (2010) Transformation of Saccharomyces cerevisiae and other fungi: methods and possible underlying mechanism. Bioeng Bugs 1:395–403PubMedCrossRefPubMedCentralGoogle Scholar
  21. Pham TA, Kawai S, Kono E, Murata K (2011a) The role of the cell wall revealed by the visualization of Saccharomyces cerevisiae transformation. Curr Microbiol 62:956–961PubMedCrossRefGoogle Scholar
  22. Pham TA, Kawai S, Murata K (2011b) Visualization of the synergistic effect of lithium acetate and single stranded carrier DNA on Saccharomyces cerevisiae transformation. Curr Genet 57:233–239PubMedCrossRefGoogle Scholar
  23. Schiestl RH, Gietz RD (1989) High efficiency transformation of intact yeast cells using single-stranded nucleic acids as carrier. Curr Genet 16:339–346PubMedCrossRefGoogle Scholar
  24. Shoemaker DD, Lashkari DA, Morris D, Mittmann M, Davis RW (1996) Quantitative phenotypic analysis of yeast deletion mutants using a highly parallel molecular bar-coding strategy. Nat Genet 14:450–456PubMedCrossRefGoogle Scholar
  25. Winzeler EA, Shoemaker DD, Astromoff A, Liang H, Anderson K, Andre B, Banghman R, Benito R, Boeke JD, Bussey H, Chu AM, Connelly C, Davis K, Dietrich F, Dow SW, El Bakkoury M, Foury F, Friend SH, Gentalen E, Giaever G, Hegemann JH, Jones T, Laub M, Liao H, Liebundguth N, Lockhart DJ, Lucau-Danila A, Lussier M, M’Rabet N, Menard P, Mittmann M, Pai C, Rebischung C, Revuelta JL, Riles L, Roberts CJ, Ross-MacDonald P, Scherens B, Snyder M, Shookhai-Mahadeo S, Storms RK, Véronneau S, Voet M, Volckaert G, Ward TR, Wysocki R, Yen GS, Yu K, Zimmermann K, Philippsen P, Johnston M, Davis RW (1999) Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science 285:901–906PubMedCrossRefGoogle Scholar
  26. Zheng HZ, Liu HH, Chen SX, Lu ZX, Zhang ZL, Pang DW, Xie ZX, Shen P (2005) Yeast transformation process studied by fluorescence labeling technique. Bioconjug Chem 16:250–254PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of Biochemistry and Medical GeneticsUniversity of ManitobaWinnipegCanada

Personalised recommendations