Advertisement

Biolistic Transformation of Candida glabrata for Homoplasmic Mitochondrial Genome Transformants

  • Jingwen ZhouEmail author
  • Liming Liu
  • Guocheng Du
  • Jian Chen
Chapter
  • 2.2k Downloads
Part of the Fungal Biology book series (FUNGBIO)

Abstract

Genetic operations of mitochondrial genome of non-conventional yeast species is of great interest to investigate physiological functions of those genes located on the genome and many important metabolism functions associated with mitochondria, such as energy metabolism, generation of reactive oxygen species. Here, we describe a method to transform the mitochondrial genome of Candida glabrata by biolistic transformation.

Keywords

Mitochondria Peptite Spores DNA PCR Pathogen Fungi Biolistic transformation 

Notes

Acknowledgements

We are thankful to Thomas D. Fox for kind donation of pDS24 and continuous technical support; Nathalie Bonnefoy and Malgorzata Rak for suggestive discussion; and Xiaowei Niu for help with biolistic transformation.

References

  1. Adrio JL, Demain AL (2006) Genetic improvement of processes yielding microbial products. FEMS Microbiol Rev 30:187–214PubMedCrossRefGoogle Scholar
  2. Avalos JL, Fink GR, Stephanopoulos G (2013) Compartmentalization of metabolic pathways in yeast mitochondria improves the production of branched-chain alcohols. Nat Biotechnol 31(4):335–341PubMedCrossRefPubMedCentralGoogle Scholar
  3. Balagurumoorthy P, Adelstein SJ, Kassis AI (2008) Method to eliminate linear DNA from mixture containing nicked circular, supercoiled, and linear plasmid DNA. Anal Biochem 381:172–174PubMedCrossRefPubMedCentralGoogle Scholar
  4. Berger KH, Yaffe MP (2000) Mitochondrial DNA inheritance in Saccharomyces cerevisiae. Trends Microbiol 8:508–513PubMedCrossRefGoogle Scholar
  5. Bialkova A, Subik J (2006) Biology of the pathogenic yeast Candida glabrata. Folia Microbiol (Praha) 51:3–20CrossRefGoogle Scholar
  6. Bonnefoy N, Remacle C, Fox TD (2007) Genetic transformation of Saccharomyces cerevisiae and Chlamy-domonas reinhardtii mitochondria. In: Lorand L (ed) Mitochondria, 2nd edn. Academic, San Diego, CA, pp 525–548Google Scholar
  7. Burgstaller JP, Schinogl P, Dinnyes A, Muller M, Steinborn R (2007) Mitochondrial DNA heteroplasmy in ovine fetuses and sheep cloned by somatic cell nuclear transfer. BMC Dev Biol 7:10CrossRefGoogle Scholar
  8. Butow RA, Henke RM, Moran JV, Belcher SM, Perlman PS (1996) Transformation of Saccharomyces cerevisiae mitochondria using the biolistic gun. Methods Enzymol 264:265–278PubMedCrossRefGoogle Scholar
  9. Chen XJ, Clark-Walker GD (2000) The petite mutation in yeasts: 50 years on. Int Rev Cytol 194:197–238PubMedCrossRefGoogle Scholar
  10. Clark-Walker GD (2007) The F1-ATPase inhibitor lnh1 (IF1) affects suppression of mtDNA loss-lethality in Kluyveromyces lactis. FEMS Yeast Res 7:665–674PubMedCrossRefGoogle Scholar
  11. Cogliati S, Frezza C, Soriano ME, Varanita T, Quintana-Cabrera R, Corrado M, Cipolat S, Costa V, Casarin A, Gomes LC, Perales-Clemente E, Salviati L, Fernandez-Silva P, Enriquez JA, Scorrano L (2013) Mitochondrial cristae shape determines respiratory chain supercomplexes assembly and respiratory efficiency. Cell 155:160–171PubMedCrossRefPubMedCentralGoogle Scholar
  12. Defontaine A, Lecocq FM, Hallet JN (1991) A rapid miniprep method for the preparation of yeast mitochondrial DNA. Nucleic Acids Res 19:185PubMedCrossRefPubMedCentralGoogle Scholar
  13. Druzhyna NM, Wilson GL, LeDoux SP (2008) Mitochondrial DNA repair in aging and disease. Mech Ageing Dev 129:383–390PubMedCrossRefPubMedCentralGoogle Scholar
  14. Duenas E, Revuelta JL, del Rey F, de Aldana CRV (1999) Disruption and basic phenotypic analysis of six novel genes from the left arm of chromosome XIV of Saccharomyces cerevisiae. Yeast 15:63–72PubMedCrossRefGoogle Scholar
  15. Falkenberg M, Larsson NG, Gustafsson CM (2007) DNA replication and transcription in mammalian mitochondria. Annu Rev Biochem 76:679–699PubMedCrossRefGoogle Scholar
  16. Foury F, Roganti T, Lecrenier N, Purnelle B (1998) The complete sequence of the mitochondrial genome of Saccharomyces cerevisiae. FEBS Lett 440:325–331PubMedCrossRefGoogle Scholar
  17. Gyllensten U, Wharton D, Josefsson A, Wilson AC (1991) Paternal inheritance of mitochondrial-DNA in mice. Nature 352:255–257PubMedCrossRefGoogle Scholar
  18. Hanson MR, Folkerts O (1992) Structure and function of the higher plant mitochondrial genome. Int Rev Cytol 141:129–172CrossRefGoogle Scholar
  19. Harris CB, Chowanadisai W, Mishchuk DO, Satre MA, Slupsky CM, Rucker RB (2013) Dietary pyrroloquinoline quinone (PQQ) alters indicators of inflammation and mitochondrial-related metabolism in human subjects. J Nutr Biochem 24:2076–2084PubMedCrossRefGoogle Scholar
  20. Hughes AL, Gottschling DE (2012) An early age increase in vacuolar pH limits mitochondrial function and lifespan in yeast. Nature 492(7428):261–265PubMedCrossRefPubMedCentralGoogle Scholar
  21. Kang D, Hamasaki N (2002) Maintenance of mitochondrial DNA integrity: repair and degradation. Curr Genet 41:311–322PubMedCrossRefGoogle Scholar
  22. Kaur R, Domergue R, Zupancic ML, Cormack BP (2005) A yeast by any other name: Candida glabrata and its interaction with the host. Curr Opin Microbiol 8:378–384PubMedCrossRefGoogle Scholar
  23. Kominsky DJ, Thorsness PE (2000) Expression of the Saccharomyces cerevisiae gene YME1 in the petite-negative yeast Schizosaccharomyces pombe converts it to petite-positive. Genetics 154:147–154PubMedPubMedCentralGoogle Scholar
  24. Koszul R, Malpertuy A, Frangeul L, Bouchier C, Wincker P, Thierry A, Duthoy S, Ferris S, Hennequin C, Dujon B (2003) The complete mitochondrial genome sequence of the pathogenic yeast Candida (Torulopsis) glabrata. FEBS Lett 534:39–48PubMedCrossRefGoogle Scholar
  25. Lewin AS, Morimoto R, Rabinowitz M (1979) Stable heterogeneity of mitochondrial DNA in grande and petite strains of S. cerevisiae. Plasmid 2:474–484PubMedCrossRefGoogle Scholar
  26. Liu LM, Li Y, Li HZ, Chen J (2004) Manipulating the pyruvate dehydrogenase bypass of a multi-vitamin auxotrophic yeast Torulopsis glabrata enhanced pyruvate production. Lett Appl Microbiol 39:199–206PubMedCrossRefGoogle Scholar
  27. Lovett ST, Kolodner RD (1989) Identification and purification of a single-stranded-DNA-specific exonuclease encoded by the rec J gene of Escherichia coli. Proc Natl Acad Sci U S A 86:2627–2631PubMedCrossRefPubMedCentralGoogle Scholar
  28. McMullin TW, Fox TD (1993) COX3 messenger RNA-specific translational activator proteins are associated with the inner mitochondrial-membrane in Saccharomyces cerevisiae. J Biol Chem 268:11737–11741PubMedGoogle Scholar
  29. Muller H, Hennequin C, Gallaud J, Dujon B, Fairhead C (2008) The asexual yeast Candida glabrata maintains distinct a and α haploid mating types. Eukaryot Cell 7:848–858PubMedCrossRefPubMedCentralGoogle Scholar
  30. Polakova S, Blume C, Zarate JA, Mentel M, Jorck-Ramberg D, Stenderup J, Piskur J (2009) Formation of new chromosomes as a virulence mechanism in yeast Candida glabrata. Proc Natl Acad Sci U S A 106:2688–2693PubMedCrossRefPubMedCentralGoogle Scholar
  31. Rak M, Tetaud E, Duvezin-Caubet S, Ezkurdia N, Bietenhader M, Rytka J, di Rago JP (2007a) A yeast model of the neurogenic ataxia retinitis pigmentosa (NARP) T8993G mutation in the mitochondrial ATP synthase-6 gene. J Biol Chem 282:34039–34047PubMedCrossRefGoogle Scholar
  32. Rak M, Tetaud E, Godard F, Sagot I, Salin B, Duvezin-Caubet S, Slonimski PP, Rytka J, di Rago JP (2007b) Yeast cells lacking the mitochondrial gene encoding the ATP synthase subunit 6 exhibit a selective loss of complex IV and unusual mitochondrial morphology. J Biol Chem 282:10853–10864PubMedCrossRefGoogle Scholar
  33. Ryan MT, Hoogenraad NJ (2007) Mitochondrial–nuclear communications. Annu Rev Biochem 76:701–722PubMedCrossRefGoogle Scholar
  34. Sachadyn P, Zhang XM, Clark LD, Naviaux RK, Heber-Katz E (2008) Naturally occurring mitochondrial DNA heteroplasmy in the MRL mouse. Mitochondrion 8:358–366PubMedCrossRefPubMedCentralGoogle Scholar
  35. Schmidt P, Walker J, Selway L, Stead D, Yin Z, Enjalbert B, Weig M, Brown AJ (2008) Proteomic analysis of the pH response in the fungal pathogen Candida glabrata. Proteomics 8:534–544PubMedCrossRefGoogle Scholar
  36. Shitara H, Hayashi J, Takahama S, Kaneda H, Yonekawa H (1998) Maternal inheritance of mouse mtDNA in interspecific hybrids: segregation of the leaked paternal mtDNA followed by the prevention of subsequent paternal leakage. Genetics 148:851–857PubMedPubMedCentralGoogle Scholar
  37. Steele DF, Butler CA, Fox TD (1996) Expression of a recoded nuclear gene inserted into yeast mitochondrial DNA is limited by mRNA-specific translational activation. Proc Natl Acad Sci U S A 93:5253–5257PubMedCrossRefPubMedCentralGoogle Scholar
  38. Strand MK, Stuart GR, Longley MJ, Graziewicz MA, Dominick OC, Copeland WC (2003) POS5 gene of Saccharomyces cerevisiae encodes a mitochondrial NADH kinase required for stability of mitochondrial DNA. Eukaryot Cell 2:809–820PubMedCrossRefPubMedCentralGoogle Scholar
  39. Subramanian K, Rutvisuttinunt W, Scott W, Myers RS (2003) The enzymatic basis of processivity in lambda exonuclease. Nucleic Acids Res 31:1585–1596PubMedCrossRefPubMedCentralGoogle Scholar
  40. Talla E, Anthouard V, Bouchier C, Frangeul L, Dujon B (2005) The complete mitochondrial genome of the yeast Kluyveromyces thermotolerans. FEBS Lett 579:30–40PubMedCrossRefGoogle Scholar
  41. Taylor SD, Zhang H, Eaton JS, Rodeheffer MS, Lebedeva MA, O’Rourke TW, Siede W, Shadel GS (2005) The conserved Mec1/Rad53 nuclear checkpoint pathway regulates mitochondrial DNA copy number in Saccharomyces cerevisiae. Mol Biol Cell 16:3010–3018PubMedCrossRefPubMedCentralGoogle Scholar
  42. Toogood PL (2008) Mitochondrial drugs. Curr Opin Chem Biol 12:457–463PubMedCrossRefGoogle Scholar
  43. Veatch JR, McMurray MA, Nelson ZW, Gottschling DE (2009) Mitochondrial dysfunction leads to nuclear genome instability via an iron–sulfur cluster defect. Cell 137:1247–1258PubMedCrossRefPubMedCentralGoogle Scholar
  44. Wallace DC (1992) Diseases of the mitochondrial DNA. Annu Rev Biochem 61:1175–1212PubMedCrossRefGoogle Scholar
  45. Wang QH, He P, Lu DJ, Shen A, Jiang N (2005) Metabolic engineering of Torulopsis glabrata for improved pyruvate production. Enzyme Microb Technol 36:832–839CrossRefGoogle Scholar
  46. Zhou JW, Dong ZY, Liu LM, Du GC, Chen J (2009a) A reusable method for construction of non-marker large fragment deletion yeast auxotroph strains: a practice in Torulopsis glabrata. J Microbiol Methods 76:70–74PubMedCrossRefGoogle Scholar
  47. Zhou JW, Liu LM, Shi ZP, Du GC, Chen J (2009b) ATP in current biotechnology: regulation, applications and perspectives. Biotechnol Adv 27:94–101PubMedCrossRefGoogle Scholar
  48. Zhou JW, Liu LM, Chen J (2010) Mitochondrial DNA heteroplasmy in Candida glabrata after mitochondrial transformation. Eukaryot Cell 9:806–814PubMedCrossRefPubMedCentralGoogle Scholar
  49. Zinn AR, Pohlman JK, Perlman PS, Butow RA (1987) Kinetic and segregational analysis of mitochondrial DNA recombinant in yeast. Plasmid 17:248–256PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Jingwen Zhou
    • 1
    Email author
  • Liming Liu
    • 1
  • Guocheng Du
    • 1
  • Jian Chen
    • 1
  1. 1.School of BiotechnologyJiangnan UniversityWuxiChina

Personalised recommendations