Advertisement

Biolistic Transformation for Delivering DNA into the Mitochondria

  • Arianna Montanari
  • Monique Bolotin-Fukuhara
  • Mario Fazzi D’Orsi
  • Cristina De Luca
  • Michele M. Bianchi
  • Silvia Francisci
Chapter
Part of the Fungal Biology book series (FUNGBIO)

Abstract

Genetic transformation is defined as a process of introducing genetic material (i.e. DNA) into a cell that results in a heritable change. Many approaches now exist that allow routine transformation. Although the biolistic procedure is not the most widely applied transformation technique, it is a key method to modify the mitochondrial DNA (mitDNA) and is an advisable method for gene transfer into various organisms and tissues that have proved recalcitrant to more conventional means.

This method is widely used for Saccharomyces cerevisiae mitochondrial transformation. We describe here the methodology as well as the most important results which were obtained.

Keywords

Saccharomyces cerevisiae Transformation of mitochondria Mitochondrial reverse genetics Mitochondrial diseases Genetic transformation 

References

  1. Aly R, Halpern N, Rubin B, Dor E, Golan S, Hershenhorn J (2001) Biolistic transformation of Cercospora caricis, a specific pathogenic fungus of Cyperus rotundus. Mycol Res 105:150–152CrossRefGoogle Scholar
  2. Armaleo D, Ye GN, Klein TM, Shark KB, Sanford JC, Johnston SA (1990) Biolistic nuclear transformation of Saccharomyces cerevisiae and other fungi. Curr Genet 17:97–103PubMedCrossRefGoogle Scholar
  3. Becker DK, Dugdale B, Smith MK, Harding RM, Dale JL (2000) Genetic transformation of cavendish banana (Musa spp. AAA group) cv “Grand nain” via microprojectile bombardment. Plant Cell Rep 19:229–234CrossRefGoogle Scholar
  4. Bills SN, Richter DL, Podila GK (1995) Genetic transformation of the ectomycorrhizal fungus Paxillus involutus by particle bombardment. Mycol Res 99:557–561CrossRefGoogle Scholar
  5. Blakely EL, Mitchell AL, Fisher N, Meunier B, Nijtmans LG, Schaefer AM, Jackson MJ, Turnbull DM, Taylor RW (2005) A mitochondrial cytochrome b mutation causing severe respiratory chain enzyme deficiency in humans and yeast. FEBS J 272:3583–3592PubMedCrossRefGoogle Scholar
  6. Bolotin M, Coen D, Deutsch J, Dujon B, Netter P, Petrochilo E, Slonimski PP (1971) La recombinaison des mitochondries chez Saccharomyces cerevisiae. Bull Inst Pasteur 69:215–239Google Scholar
  7. Bolotin-Fukuhara M, Fukuhara H (1976) Modified recombination and transmission of mitochondrial genetic markers in rho- mutants of Saccharomyces cerevisia. Proc Natl Acad Sci U S A 73:4608–4612CrossRefGoogle Scholar
  8. Bonnefoy N, Remacle C, Fox TD (2007) Genetic transformation of Saccharomyces cerevisia e and Chlamydomonas reinhardtii mitochondria. Methods Cell Biol 80:525–548PubMedCrossRefGoogle Scholar
  9. Bonnefoy N, Fox TD (2007) Directed alteration of Saccharomyces cerevisiae mitochondrial DNA by biolistic transformation and homologous recombination. Methods Mol Biol 372:153–166PubMedCrossRefPubMedCentralGoogle Scholar
  10. Bonnefoy N, Fox TD (2001) Genetic transformation of Saccharomyces cerevisiae mitochondria. Methods Cell Biol 65:381–396PubMedCrossRefGoogle Scholar
  11. Bonnefoy N, Fox TD (2000) In vivo analysis of mutated initiation codons in the mitochondrial COX2 gene of Saccharomyces cerevisiae fused to the reporter gene ARG8m reveals lack of downstream reinitiation. Mol Gen Genet 262:1036–1046PubMedCrossRefGoogle Scholar
  12. Chinnery P, Thorburn D, Samuels D, White S, Dahl H, Turnbull D, Lightowlers R, Howell N (2000) The inheritance of mitochondrial DNA heteroplasmy: random drift, selection or both? Trends Genet 16:501–505CrossRefGoogle Scholar
  13. Cohen JS, Fox TD (2001) Expression of green fluorescent protein from a recoded gene inserted into Saccharomyces cerevisiae mitochondrial DNA. Mitochondrion 1:181–189PubMedCrossRefGoogle Scholar
  14. Conde J, Fink GR (1976) A mutant of Saccharomyces cerevisiae defective for nuclear fusion. Proc Natl Acad Sci U S A 73:3651–3655PubMedCrossRefPubMedCentralGoogle Scholar
  15. Costanzo MC, Fox TD (1993) Suppression of a defect in the 5′ untranslated leader of mitochondrial COX3 mRNA by a mutation affecting an mRNA-specific translational activator protein. Mol Cell Biol 13:4806–4813PubMedPubMedCentralGoogle Scholar
  16. De Luca C, Zhou Y, Montanari A, Morea V, Oliva R, Besagni C, Bolotin-Fukuhara M, Francisci S (2009) Can yeast be used to study mitochondrial diseases? Biolistic mutants for the analysis of mechanisms and suppressors. Mitochondrion 9:408–417PubMedCrossRefGoogle Scholar
  17. De Luca C, Besagni C, Frontali L, Bolotin-Fukuhara M, Francisci S (2006) Mutations in yeast mittRNAs: specific and general suppression by nuclear encoded tRNAinteractors. Gene 377:169–176PubMedCrossRefGoogle Scholar
  18. Ding MG, Butler CA, Saracco SA, Fox TD, Godard F, di Rago JP, Trumpower BL (2008) Introduction of cytochrome b mutations in Saccharomyces cerevisiae by a method that allows selection for both functional and non-functional cytochrome b proteins. Biochim Biophys Acta 1777:1147–1156PubMedCrossRefPubMedCentralGoogle Scholar
  19. Durand R, Rascle C, Fischer M, Fèvre M (1997) Transient expression of the beta-glucuronidase gene after biolistic transformation of the anaerobic fungus Neocallimastix frontalis. Curr Genet 31:158–161PubMedCrossRefGoogle Scholar
  20. Fernando DD, Owens JN, Misra S (2000) Transient gene expression in pine pollen tubes following particle bombardment. Plant Cell Rep 12:224–228CrossRefGoogle Scholar
  21. Feuermann M, Francisci S, Rinaldi T, De Luca C, Rohou H, Frontali L, Bolotin-Fukuhara M (2003) The yeast counterparts of human ‘MELAS’ mutations cause mitochondrial dysfunction which can be rescued by overexpression of the mitochondrial translation factor EF-Tu. EMBO Rep 4:53–58PubMedCrossRefPubMedCentralGoogle Scholar
  22. Fisher N, Meunier B (2001) Effects of mutations in mitochondrial cytochrome b in yeast and man. Deficiency, compensation and disease. Eur J Biochem 268:1155–1162PubMedCrossRefGoogle Scholar
  23. Fisher N, Meunier B (2005) Re-examination of inhibitor resistance conferred by Qo-site mutations in cytochrome b using yeast as a model system. Pest Manag Sci 61:973–978PubMedCrossRefGoogle Scholar
  24. Fisher N, Meunier B (2008) Molecular basis of resistance to cytochrome bc1 inhibitors. FEMS Yeast Res 8:183–192PubMedCrossRefGoogle Scholar
  25. Fox TD, Sanford JC, McMullin TW (1988) Plasmids can stably transform yeast mitochondria lacking endogenous mitDNA. Proc Natl Acad Sci 85:7288–7292PubMedCrossRefPubMedCentralGoogle Scholar
  26. Francisci S, Montanari A, De Luca C, Frontali L (2011) Peptides from aminoacyl-tRNAsynthetases can cure the defects due to mutations in mittRNA genes. Mitochondrion 11:919–923PubMedCrossRefPubMedCentralGoogle Scholar
  27. Fukuoka H, Ogawa T, Matsuoka M, Ohkawa Y, Yano H (1998) Direct gene delivery into isolated microspores of rapeseed (Brassica napus) and production of fertile transgenic plants. Plant Cell Rep 17:323–328CrossRefGoogle Scholar
  28. Fungaro MH, Rech E, Muhlen GS, Vainstein MH, Pascon RC, de Queiroz MV, Pizzirani-Kleiner AA, de Azevedo JL (1995) Transformation of Aspergillus nidulans by microprojectile bombardment on intact conidia. FEMS Microbiol Lett 125:293–297PubMedCrossRefGoogle Scholar
  29. Harrier LA, Millam S (2001) Biolistic transformation of Arbuscular Mycorrhizal Fungi. Progress and perspectives. Mol Biotechnol 18:25–33PubMedCrossRefGoogle Scholar
  30. He S, Fox TD (1999) Mutations affecting a yeast mitochondrial inner membrane protein, pnt1p, block export of a mitochondrially synthesized fusion protein from the matrix. Mol Cell Biol 19:6598–6607PubMedPubMedCentralGoogle Scholar
  31. Isik M, Berezikov E (2013) Biolistic transformation of Caenorhabditis elegans. Methods Mol Biol 940:77–86PubMedGoogle Scholar
  32. Jingwen Z, Liming L, Jian C (2010) Mitochondrial DNA heteroplasmy in Candida glabrata after mitochondrial transformation. Eukaryot Cell 5:806–814Google Scholar
  33. Johnston SA, Anziano PQ, Shark K, Sanford JC, Butow RA (1988) Mitochondrial transformation in yeast by bombardment with microprojectiles. Science 240:1538–1541PubMedCrossRefGoogle Scholar
  34. Johnston SA (1990) Biolistic transformation: microbes to mice. Nature 346:776–777PubMedCrossRefGoogle Scholar
  35. Mayfield SP, Kindle KL (1990) Stable nuclear transformation of Chlamydomonas reinhardtii by using a C. reinhardtii gene as the selectable marker. Proc Natl Acad Sci U S A 87:2087–2091PubMedCrossRefPubMedCentralGoogle Scholar
  36. Kaya S, Imai T, Ishige M (1990) The efficiency of transformation by Agrobacterium tumefaciens without selection marker. Jpn J Breed 40:82–83Google Scholar
  37. Kessl JJ, Ha KH, Merritt AK, Lange BB, Hill P, Meunier B, Meshnick SR, Trumpower BL (2005) Cytochrome b mutations that modify the ubiquinol-binding pocket of the cytochrome bc1 complex and confer anti-malarial drug resistance in Saccharomyces cerevisiae. J Biol Chem 280:17142–17148PubMedCrossRefGoogle Scholar
  38. Kikkert JR (1993) The Biolistic PDS-1000/He device. Plant Cell Tiss Org Cult 33:221–226CrossRefGoogle Scholar
  39. Kikkert JR, Humiston GA, Roy MK, Sanford JC (1999) Biological projectiles (Phage, yeast, bacteria), for genetic transformation of plants. In Vitro Cell Dev Biol Plant 35:43–50CrossRefGoogle Scholar
  40. Kim G, Sikder H, Singh KK (2002) A colony color method identifies the vulnerability of mitochondria to oxidative damage. Mutagenesis 17:375–381PubMedCrossRefGoogle Scholar
  41. Klein TM, Harper EC, Svab Z, Sanford JC, Fromm ME, Maliga P (1988) Stable genetic transformation of intact Nicotiana cells by the particle bombardment process. Proc Natl Acad Sci U S A 85:8502–8505PubMedCrossRefPubMedCentralGoogle Scholar
  42. Kucharczyk R, Giraud MF, Brèthes D, Wysocka-Kapcinska M, Ezkurdia N, Salin B, Velours J, Camougrand N, Haraux F, diRago JP (2013) Defining the pathogenesis of human mitDNA mutations using a yeast model: the case of T8851C. Int J Biochem Cell Biol 45:130–140PubMedCrossRefGoogle Scholar
  43. Kucharczyk R, Ezkurdia N, Couplan E, Procaccio V, Ackerman SH, Blondel M, di Rago JP (2010) Consequences of the pathogenic T9176C mutation of human mitochondrial DNA on yeast mitochondrial ATP synthase. Biochim Biophys Acta 1797:1105–1112PubMedCrossRefPubMedCentralGoogle Scholar
  44. Kucharczyk R, Rak M, di Rago JP (2009a) Biochemical consequences in yeast of the human mitochondrial DNA 8993T > C mutation in the ATPase6 gene found in NARP/MILS patients. Biochim Biophys Acta 1793:817–824PubMedCrossRefGoogle Scholar
  45. Kucharczyk R, Salin B, di Rago JP (2009b) Introducing the human Leigh syndrome mutation T9176G into Saccharomyces cerevisiae mitochondrial DNA leads to severe defects in the incorporation of Atp6p into the ATP synthase and in the mitochondrial morphology. Hum Mol Genet 18:2889–2898PubMedCrossRefGoogle Scholar
  46. Larosa V, Remacle C (2013) Transformation of the mitochondrial genome. Int J Dev Biol 57:659–665PubMedCrossRefGoogle Scholar
  47. Laufs J, Wirtz U, Kammann M, Matzeit V, Schaefer S, Schell J, Czernilofsky AP, Baker B, Gronenborn B (1990) Wheat dwarf virus AC/DS vectors-expression and excision of transposable elements introduced into various cereals by a viral replicon. Proc Natl Acad Sci U S A 87:7752–7756PubMedCrossRefPubMedCentralGoogle Scholar
  48. Maenpaa P, Gonzalez EB, Ahlandsberg S, Jansson C (1999) Transformation of nuclear and plastonic plant genomes by biolistic particle bombardment. Mol Biotechnol 13:67–72PubMedCrossRefGoogle Scholar
  49. Mahapatra S, Adhya S (1996) Import of RNA into Leishmania mitochondria occurs through direct interaction with membrane-bound receptors. J Biol Chem 271:20432–20437PubMedCrossRefGoogle Scholar
  50. Meunier B (2001) Site-directed mutations in the mitochondrially encoded subunits I and III of yeast cytochrome oxidase. Biochem J 354:407–412PubMedCrossRefPubMedCentralGoogle Scholar
  51. Mitrikeski PT (2013) Yeast competence for exogenous DNA uptake: towards understanding its genetic component. Antonie Van Leeuwenhoek 103:1181–1207PubMedCrossRefGoogle Scholar
  52. Montanari A, De Luca C, Frontali L, Francisci S (2010) AminoacyltRNAsynthetases are multivalent suppressors of defects due to human equivalent mutations in yeast mittRNA genes. Biochim Biophys Acta 1803:1050–1057PubMedCrossRefGoogle Scholar
  53. Montanari A, Zhou YF, D’Orsi MF, Bolotin-Fukuhara M, Frontali L, Francisci S (2013) Analyzing the suppression of respiratory defects in the yeast model of human mitochondrial tRNA diseases. Gene 527:1–9PubMedCrossRefGoogle Scholar
  54. Montanari A, Francisci S, Fazzi D’Orsi M, Bianchi MM (2014) Strain-specific nuclear genetic background differentially affects mitochondria-related phenotypes in Saccharomyces cerevisiae. Microbiologyopen. doi: 10.1002/mbo3.167 PubMedPubMedCentralGoogle Scholar
  55. Rak M, Tetaud E, Duvezin-Caubet S, Ezkurdia N, Bietenhader M, Rytka J, di Rago JP (2007) A yeast model of the neurogenic ataxia retinitis pigmentosa (NARP) T8993G mutation in the mitochondrial ATP synthase-6 gene. J Biol Chem 282:34039–34047PubMedCrossRefGoogle Scholar
  56. Rasco-Gaunt S, Riley A, Barcelo P, Lazzeri PA (1999) Analysis of particle bombardment parameters to optimise DNA delivery into wheat tissues. Plant Cell Rep 19:118–127CrossRefGoogle Scholar
  57. Rasmussen JL, Kikert JR, Roy MK, Sanford JC (1994) Biolistic transformation of tobacco and maize suspension cells using bacterial cells as microprojectiles. Plant Cell Rep 13:212–217PubMedGoogle Scholar
  58. Rinaldi T, Dallabona C, Ferrero I, Frontali L, Bolotin-Fukuhara M (2010) Mitochondrial diseases and the role of the yeast models. FEMS Yeast Res 10:1006–1022PubMedCrossRefGoogle Scholar
  59. Roberts IN, Oliver RP, Punt PJ, van den Hondel CA (1989) Expression of the Escherichia coli beta-glucuronidase gene in industrial and phytopathogenic filamentous fungi. Curr Genet 15:177–180PubMedCrossRefGoogle Scholar
  60. Rodriguez-Tovara AV, Ruiz-Medranoa R, Herrera-Martineza A, Barrera-Figueroaa BE, Hidalgo-Laraa ME, Reyes-Mairquezb BE, Cabrera-Poncec JL, Valdeisd M, Xoconostle-Caizares B (2005) Stable genetic transformation of the ectomycorrhizal fungus Pisolithus tinctorius. J Microbiol Methhods 63:45–54CrossRefGoogle Scholar
  61. Rohou H, Francisci S, Rinaldi T, Frontali L, Bolotin-Fukuhara M (2001) Reintroduction of a characterized mittRNA glycine mutation into yeast mitochondria provides a new tool for the study of human neurodegenerative diseases. Yeast 18:219–227PubMedCrossRefGoogle Scholar
  62. Salinas T, Duchêne AM, Maréchal-Drouard L (2008) Recent advances in tRNA mitochondria import. Trends Biochem Sci 33:320–329PubMedCrossRefGoogle Scholar
  63. Sanchirico ME, Fox TD, Mason TL (1998) Accumulation of mitochondrially synthesized Saccharomyces cerevisiae Cox2p and Cox3p depends on targeting information in untranslated portions of their mRNAs. EMBO J 17:5796–5804PubMedCrossRefPubMedCentralGoogle Scholar
  64. Sanford JC, Smith FD, Russel JA (1993) Optimizing the biolistic process for different biological applications. Methods Enzymol 217:483–509PubMedCrossRefGoogle Scholar
  65. Shark KB, Smith FD, Harpendinget PR, Rasmussen JL, Sanford JC (1991) Biolistic transformation of a procaryote, Bacillus megaterium. Appl Environ Microbiol 57:480–485PubMedPubMedCentralGoogle Scholar
  66. Sieber F, Duchêne AM, Marechal-Drouard L (2011) Import of nuclear DNA-encoded RNAs into mitochondria and mitochondrial translation. Int Rev Cell Mol Biol 287:145–190, ReviewPubMedCrossRefGoogle Scholar
  67. Steele DF, Butler CA, Fox TD (1996) Expression of a recoded nuclear gene inserted into yeast mitochondrial DNA is limited by mRNA-specific translational activation. Proc Natl Acad Sci U S A 93:5253–5257PubMedCrossRefPubMedCentralGoogle Scholar
  68. Leger RJS, Shimizu S, Joshi L, Bidochka MJ, Roberts DW (1995) Co-transformation of Metarrhizium anisopliae by electroporation or using the gene gun to produce stable GUS transformants. FEMS Microbiol Lett 131:289–294CrossRefGoogle Scholar
  69. Tang K, Tinjuangjun P, Xu Y, Sun X, Gatehouse JA, Ronald PC, Qi H, Lu X, Christou P, Kohli A (1999) Particle-bombardment-mediated cotransformation of elite Chinese rice cultivars with genes conferring resistance to bacterial blight and sap-sucking insect pests. Planta 208:552–563CrossRefGoogle Scholar
  70. Tarassov I, Kamenski P, Kolesnikova O, Karicheva O, Martin RP, Krasheninnikov IA, Entelis N (2007) Import of nuclear DNA-encoded RNAs into mitochondria and mitochondrial translation. Cell Cycle 6:2473–2477PubMedCrossRefGoogle Scholar
  71. Te’o VSJ, Bergquist PL, Nevalainen KMH (2002) Biolistic transformation of Trichoderma reesei using the Bio-Rad seven barrels Hepta Adaptor system. J Microbiol Methods 51:393–399PubMedCrossRefGoogle Scholar
  72. Vallières C, Fisher N, Meunier B (2013) Reconstructing the Qo site of Plasmodium falciparum bc 1 complex in the yeast enzyme. PLoS One 8:e71726PubMedCrossRefPubMedCentralGoogle Scholar
  73. Tuppen HA, Blakely EL, Turnbull DM, Taylor RW (2010) Mitochondrial DNA mutations and human disease. Biochim Biophys Acta 1797:113–128PubMedCrossRefGoogle Scholar
  74. Wenz T, Covian R, Hellwig P, Macmillan F, Meunier B, Trumpower BL, Hunte C (2007) Mutational analysis of cytochrome b at the ubiquinol oxidation site of yeast complex III. J Biol Chem 282:3977–3988PubMedCrossRefGoogle Scholar
  75. Yu JJ, Cole GT (1998) Biolistic transformation of the human pathogenic fungus Coccidioides immitis. J Microbiol Methods 33:129–141CrossRefGoogle Scholar
  76. Yuen JL, Read SA, Brubacher JL, Singh AD, Whyard S (2008) Biolistics for high-throughput transformation and RNA interference in Drosophila melanogaster. Fly 2:247–254PubMedCrossRefGoogle Scholar
  77. Zemanova A, Nosek AJ, Lubomir T (2004) High-efficiency transformation of the pathogenic yeast Candida parapsilosis. Curr Genet 45:183–186PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Arianna Montanari
    • 1
  • Monique Bolotin-Fukuhara
    • 2
  • Mario Fazzi D’Orsi
    • 1
  • Cristina De Luca
    • 1
  • Michele M. Bianchi
    • 1
  • Silvia Francisci
    • 1
  1. 1.Department of Biology and Biotechnologies “Charles Darwin”Sapienza University of Rome, Pasteur Institute-Cenci Bolognetti FoundationRomeItaly
  2. 2.Institut de Génétique e Microbiologie, Laboratoire de Génétique MoléculaireUniversité Paris-SudOrsay-CedexFrance

Personalised recommendations