Skip to main content

Fungal Transformation: From Protoplasts to Targeted Recombination Systems

  • Chapter
  • First Online:
Genetic Transformation Systems in Fungi, Volume 1

Part of the book series: Fungal Biology ((FUNGBIO))

Abstract

Transformation of fungi is required for understanding their molecular biology and for manipulation of strains of industrial interest. The development of efficient transformation systems has been hampered by the extreme diversity of ascomycetes, basidiomycetes, and zygomycetes. Polyethylene glycol-assisted transformation of fungal protoplasts is the most widely used system but alternative procedures, e.g., electroporation and Agrobacterium tumefaciens-mediated transformation have been developed.

Most transformation procedures rely on integrative vectors, but AMA1-containing vectors that replicate autonomously are available. Exogenous DNA integrates frequently at nonhomologous sites in the genome. This is a problem for targeted gene disruption and for quantifying gene expression. Procedures for directed integration of a single plasmid copy at a specific locus in the genome have been developed.

Mutants of different fungi impaired in the NHEJ system allowed to select recombinants at homologous sites with high efficiency. These advances have contributed significantly to the progress in the molecular biology of fungi.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akins RA, Lambowitz AM (1985) General method for cloning Neurospora crassa nuclear genes by complementation of mutants. Mol Cell Biol 5:2272–2278

    PubMed  CAS  PubMed Central  Google Scholar 

  • Aleksenko A, Clutterbuck AJ (1996) The plasmid replicator AMA1 in Aspergillus nidulans is an inverted duplication of a low copy number dispersed genomic repeat. Mol Microbiol 19:565–574

    PubMed  CAS  Google Scholar 

  • Aleksenko A, Clutterbuck AJ (1997) Autonomous plasmid replication in Aspergillus nidulans: AMA1 and MATE elements. Fungal Genet Biol 21:373–387

    PubMed  CAS  Google Scholar 

  • Aleksenko A, Makarova N, Nikolaev I, Clutterbuck AJ (1995) Integrative and replicative transformation of Penicillium canescens with a heterologous nitrate-reductase gene. Curr Genet 28:474–477

    PubMed  CAS  Google Scholar 

  • Anaya N, Roncero MI (1991) Transformation of a methionine auxotrophic mutant of Mucor circinelloides by direct cloning of the corresponding wild type gene. Mol Gen Genet 230:449–455

    PubMed  CAS  Google Scholar 

  • Anné J (1977) Somatic hybridization between Penicillium species after induced fusion of their protoplasts. Agricultura 25:1–117

    Google Scholar 

  • Ballance DJ, Turner G (1985) Development of a high-frequency transforming vector for Aspergillus nidulans. Gene 36:321–331

    PubMed  CAS  Google Scholar 

  • Ballance DJ, Turner G (1986) Gene cloning in Aspergillus nidulans: isolation of the isocitrate lyase gene (acuD). Mol Gen Genet 202:271–275

    PubMed  CAS  Google Scholar 

  • Ballance DJ, Buxton FP, Turner G (1983) Transformation of Aspergillus nidulans by the orotidine-5′-phosphate decarboxylase gene of Neurospora crassa. Biochem Biophys Res Commun 112:284–289

    PubMed  CAS  Google Scholar 

  • Bañuelos O, Casqueiro J, Gutiérrez S, Martín JF (2001) Intrachromosomal recombination after targeted monocopy integration in Penicillium chrysogenum: stabilization of the direct repeats to prevent loss of the inserted gene. Curr Genet 39:231–236

    PubMed  Google Scholar 

  • Bégueret J, Razanamparany V, Perrot M, Barreau C (1984) Cloning gene ura5 for the orotidylic acid pyrophosphorylase of the filamentous fungus Podospora anserina: transformation of protoplasts. Gene 32:487–492

    PubMed  Google Scholar 

  • Bej AK, Perlin MH (1989) A high efficiency transformation system for the basidiomycete Ustilago violacea employing hygromycin resistance and lithium-acetate treatment. Gene 80:171–176

    PubMed  CAS  Google Scholar 

  • Beri RK, Turner G (1987) Transformation of Penicillium chrysogenum using the Aspergillus nidulans amdS gene as a dominant selective marker. Curr Genet 11:639–641

    PubMed  CAS  Google Scholar 

  • Binninger DM, Skrzynia C, Pukkila PJ, Casselton LA (1987) DNA-mediated transformation of the basidiomycete Coprinus cinereus. EMBO J 6:835–840

    PubMed  CAS  PubMed Central  Google Scholar 

  • Bird D, Bradshaw R (1997) Gene targeting is locus dependent in the filamentous fungus Aspergillus nidulans. Mol Gen Genet 255:219–225

    PubMed  CAS  Google Scholar 

  • Bok JW, Noordermeer D, Kale SP, Keller NP (2006) Secondary metabolic gene cluster silencing in Aspergillus nidulans. Mol Microbiol 61:1636–1645

    PubMed  CAS  Google Scholar 

  • Bowen JK, Templeton MD, Sharrock KR, Crowhust RN, Rikkerink EHA (1995) Gene inactivation in the plant pathogen Glomerella cingulata: three strategies for the disruption of the pectin gene plnA. Mol Gen Genet 246:196–205

    PubMed  CAS  Google Scholar 

  • Brückner B, Unkles SE, Weltring K, Kinghorn JR (1992) Transformation of Gibberella fujikuroi: effect of the Aspergillus nidulans AMA1 sequence on frequency and integration. Curr Genet 22:313–316

    PubMed  Google Scholar 

  • Bull JH, Smith DJ, Turner G (1988) Transformation of Penicillium chrysogenum with a dominant selectable marker. Curr Genet 13:377–382

    PubMed  CAS  Google Scholar 

  • Bundock P, den Dulk-Ras A, Beijersbergen A, Hooykaas PJ (1995) Trans-kingdom T-DNA transfer from Agrobacterium tumefaciens to Saccharomyces cerevisiae. EMBO J 14:3206–3214

    PubMed  CAS  PubMed Central  Google Scholar 

  • Buxton FP, Radford A (1983) Cloning of the structural gene for orotidine 5′-phosphate carboxylase of Neurospora crassa by expression in Escherichia coli. Mol Gen Genet 190:403–405

    PubMed  CAS  Google Scholar 

  • Buxton FP, Gwynne DI, Davies RW (1985) Transformation of Aspergillus niger using the argB gene of Aspergillus nidulans. Gene 37:207–214

    PubMed  CAS  Google Scholar 

  • Calmels T, Parriche M, Durand H, Tiraby G (1991) High efficiency transformation of Tolypocladium geodes conidiospores to phleomycin resistance. Curr Genet 20:309–314

    PubMed  CAS  Google Scholar 

  • Campoy S, Pérez F, Martín JF, Gutiérrez S, Liras P (2003) Stable transformants of the azaphilone pigment-producing Monascus purpureus obtained by protoplast transformation and Agrobacterium-mediated DNA transfer. Curr Genet 43:447–452

    PubMed  CAS  Google Scholar 

  • Cantoral MJ, Diez B, Barredo JL, Alvarez E, Martín JF (1987) High frequency transformation of Penicillium chrysogenum. Nat Biotechnol 5:494–497

    CAS  Google Scholar 

  • Cantoral JM, Barredo JL, Alvarez E, Díez B, Martín JF (1988) Nucleotide sequence of the Penicillium chrysogenum pyrG (orotidine-5′-phosphate decarboxylase) gene. Nucleic Acids Res 16:8177

    PubMed  CAS  PubMed Central  Google Scholar 

  • Carramolino L, Lozano M, Pérez-Aranda A, Rubio V, Sánchez F (1989) Transformation of Penicillium chrysogenum to sulfonamide resistance. Gene 77:31–38

    PubMed  CAS  Google Scholar 

  • Casqueiro J, Gutiérrez S, Bañuelos O, Hijarrubia MJ, Martín JF (1999a) Gene targeting in Penicillium chrysogenum: disruption of the lys2 gene leads to penicillin overproduction. J Bacteriol 181:1181–1188

    PubMed  CAS  PubMed Central  Google Scholar 

  • Casqueiro J, Bañuelos O, Gutiérrez S, Hijarrubia MJ, Martín JF (1999b) Intrachromosomal recombination between direct repeats in Penicillium chrysogenum: gene conversion and deletion events. Mol Gen Genet 261:994–1000

    PubMed  CAS  Google Scholar 

  • Chakraborty BN, Patterson NA, Kapoor M (1991) An electroporation-based system for high-efficiency transformation of germinated conidia of filamentous fungi. Can J Microbiol 37:858–863

    PubMed  CAS  Google Scholar 

  • Chang PK (2008) A highly efficient gene-targeting system for Aspergillus parasiticus. Lett Appl Microbiol 46:587–592

    PubMed  CAS  Google Scholar 

  • Chen X, Stone M, Schlagnhaufer C, Romaine CP (2000) A fruiting body tissue method for efficient Agrobacterium-mediated transformation of Agaricus bisporus. Appl Environ Microbiol 66:4510–4513

    PubMed  CAS  PubMed Central  Google Scholar 

  • Cooley RN, Shaw RK, Franklin FCH, Caten CE (1988) Transformation of the phytopathogenic fungus Septoria nodorum to hygromycin B resistance. Curr Genet 13:383–389

    CAS  Google Scholar 

  • Daboussi MJ, Djeballi A, Gerlinger C, Blaiseau PL, Bouvier I, Cassan M, Lebrun MH, Parisot D, Brygoo Y (1989) Transformation of seven species of filamentous fungi using the nitrate reductase gene of Aspergillus nidulans. Curr Genet 15:453–456

    PubMed  CAS  Google Scholar 

  • de Groot MJ, Bundock P, Hooykaas PJ, Beijersbergen AG (1998) Agrobacterium tumefaciens-mediated transformation of filamentous fungi. Nat Biotechnol 16:839–842

    PubMed  Google Scholar 

  • Dhawale SS, Marzluf GA (1985) Transformation of Neurospora crassa with circular and linear DNA and analysis of the fate of the transforming DNA. Curr Genet 10:205–212

    PubMed  CAS  Google Scholar 

  • Díez B, Alvarez E, Cantoral JM, Barredo JL, Martín JF (1987) Selection and characterization of pyrG mutants of Penicillium chrysogenum lacking orotidine-5′-phosphate decarboxylase and complementation by the pyr4 gene of Neurospora crassa. Curr Genet 12:277–282

    Google Scholar 

  • Durand N, Reymond P, Fèvre M (1991) Transformation of Penicillium roqueforti to phleomycin and to hygromycin B-resistance. Curr Genet 19:149–153

    CAS  Google Scholar 

  • Engelenburg V, Smith R, Goosent T, van den Browk H, Tudzynski P (1989) Transformation of Claviceps purpurea using a bleomycin resistance gene. Appl Microbiol Biotechnol 30:364–370

    Google Scholar 

  • Fernández-Bodega MA, Mauriz E, Gómez A, Martín JF (2009) Proteolytic activity, mycotoxins and andrastin A in Penicillium roqueforti strains isolated from Cabrales, Valdeón and Bejes-Tresviso local varieties of blue-veined cheeses. Int J Food Microbiol 136:18–25

    PubMed  Google Scholar 

  • Fierro F, Kosalková K, Gutiérrez S, Martín JF (1996) Autonomously replicating plasmids carrying the AMA1 region in Penicillium chrysogenum. Curr Genet 29:482–489

    PubMed  CAS  Google Scholar 

  • Fierro F, Laich F, García-Rico RO, Martín JF (2004) High efficiency transformation of Penicillium nalgiovense with integrative and autonomously replicating plasmids. Int J Food Microbiol 90:237–248

    PubMed  CAS  Google Scholar 

  • Gascón S, Villanueva JR (1964) Extracellular lytic enzymes of Micromonospora. Can J Microbiol 10:301–303

    PubMed  Google Scholar 

  • Gasser SM (1991) Replication origins, factors and attachement sites. Curr Opin Cell Biol 3:407–413

    PubMed  CAS  Google Scholar 

  • Gatignol A, Baron M, Tiraby G (1987) Phleomycin resistance encoded by the ble gene from transposon Tn 5 as a dominant selectable marker in Saccharomyces cerevisiae. Mol Gen Genet 207:342–348

    PubMed  CAS  Google Scholar 

  • Geisen R, Leistner L (1989) Transformation of Penicillium nalgiovense with the amdS gene of Aspergillus nidulans. Curr Genet 15:307–309

    CAS  Google Scholar 

  • Gems DH, Clutterbuck AJ (1993) Co-transformation with autonomous-replicating helper plasmids facilitates gene cloning from an Aspergillus nidulans gene library. Curr Genet 24:520–524

    PubMed  CAS  Google Scholar 

  • Gems DH, Johnstone IL, Clutterbuck AJ (1991) An autonomously replicating plasmid transforms Aspergillus nidulans at high frequency. Gene 98:61–67

    PubMed  CAS  Google Scholar 

  • Godio RP, Fouces R, Gudiña EJ, Martín JF (2004) Agrobacterium tumefaciens-mediated transformation of the antitumor clavaric acid-producing basidiomycete Hypholoma sublateritium. Curr Genet 46:287–294

    PubMed  CAS  Google Scholar 

  • Gouka RJ, van Hartingsveldt W, Bovenberg RA, van den Hondel CA, van Gorcom RF (1991) Cloning of the nitrate-nitrite reductase gene cluster of Penicillium chrysogenum and use of the niaD gene as a homologous selection marker. J Biotechnol 20(2):189–199

    PubMed  CAS  Google Scholar 

  • Gouka RJ, van Hartingsveldt W, Bovenberg RA, van Zeijl CM, van den Hondel CA, van Gorcom RF (1993) Development of a new transformant selection system for Penicillium chrysogenum: isolation and characterization of the P. chrysogenum acetyl-coenzyme A synthetase gene (facA) and its use as a homologous selection marker. Appl Microbiol Biotechnol 38:514–519

    PubMed  CAS  Google Scholar 

  • Gouka RJ, Gerk C, Hooykaas PJ, Bundock P, Musters W, Verrips CT, de Groot MJ (1999) Transformation of Aspergillus awamori by Agrobacterium tumefaciens-mediated homologous recombination. Nat Biotechnol 17:598–601

    PubMed  CAS  Google Scholar 

  • Gutiérrez S, Marcos AT, Casqueiro J, KosaIkova K, Fernández FJ, Velasco J, Martín JF (1999) Transcription of the pcbAB, pcbC and penDE genes of Penicillium chrysogenum AS-P-78 is repressed by glucose and the repression is not reversed by alkaline pHs. Microbiology 145:317–324

    PubMed  Google Scholar 

  • Haarmann T, Lorenz N, Tudzynski P (2008) Use of a nonhomologous end joining deficient strain (Deltaku70) of the ergot fungus Claviceps purpurea for identification of a nonribosomal peptide synthetase gene involved in ergotamine biosynthesis. Fungal Genet Biol 45:35–44

    PubMed  CAS  Google Scholar 

  • Hanif M, Pardo AG, Gorfer M, Raudaskoski M (2002) T-DNA transfer and integration in the ectomycorrhizal fungus Suillus bovinus using hygromycin B as a selectable marker. Curr Genet 41:183–188

    PubMed  CAS  Google Scholar 

  • Hazell BW, Te’o VS, Bradner JR, Bergquist PL, Nevalainen KM (2000) Rapid transformation of high cellulose producing mutant strains of Trichoderma reesei by microprojectile bombardment. Lett Appl Microbiol 30:282–286

    PubMed  CAS  Google Scholar 

  • Hinnen A, Hick SJB, Fink GR (1978) Transformation of yeast chimeric ColE1 plasmid carrying LEU2. Proc Natl Acad Sci U S A 75:1929–1933

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hoskins JA, O’Callaghan N, Queener SW, Cantwell CA, Wood JS, Chen VJ, Skatrud PL (1990) Gene disruption of the pcbAB gene encoding ACV synthetase in Cephalosporium acremonium. Curr Genet 18:523–530

    PubMed  CAS  Google Scholar 

  • Hynes MJ (1979) Fine structure mapping of the acetamidase structural gene and its controlling region in Aspergillus nidulans. Genetics 91:381–392

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hynes MJ, Corrick CM, King JA (1983) Isolation of genomic clones containing the amdS gene of Aspergillus nidulans and their use in the analysis of structural and regulatory mutations. Mol Cell Biol 3:1430–1439

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ishibashi K, Suzuki K, Ando Y, Takakura C, Inoue H (2006) Nonhomologous chromosomal integration of foreign DNA is completely dependent on MUS-53 (humanLig4homolog) in Neurospora. Proc Natl Acad Sci U S A 103:14871–14876

    PubMed  CAS  PubMed Central  Google Scholar 

  • Isogai T, Yoshida M, Tanaka M, Aoki H (1987) Transformation of Acremonium chrysogenum and Saccharomyces cerevisiae using an antibiotic resistance marker. Agric Biol Chem 51:2321–2329

    CAS  Google Scholar 

  • Jami MS, Barreiro C, García-Estrada C, Martín JF (2010a) Proteome analysis of the penicillin producer Penicillium chrysogenum: characterization of protein changes during the industrial strain improvement. Mol Cell Proteomics 9:1182–1198

    PubMed  CAS  PubMed Central  Google Scholar 

  • Jami MS, García-Estrada C, Barreiro C, Cuadrado AA, Salehi-Najafabadi Z, Martín JF (2010b) The Penicillium chrysogenum extracellular proteome. Conversion from a food-rotting strain to a versatile cell factory for white biotechnology. Mol Cell Proteomics 9:2729–2744

    PubMed  CAS  PubMed Central  Google Scholar 

  • John MA, Peberdy JF (1984) Transformation of Aspergillus nidulans using the argB gene. Enzyme Microb Technol 6:386–389

    CAS  Google Scholar 

  • Kelly JM, Hynes MJ (1985) Transformation of Aspergillus niger by the amdS gene of Aspergillus nidulans. EMBO J 4:475–479

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kelly JM, Hynes MJ (1987) Multiple copies of the amdS gene of Aspergillus nidulans cause titration of trans-acting regulatory proteins. Curr Genet 12:21–31

    PubMed  CAS  Google Scholar 

  • Kelly R, Register E, Sosa M (1994) Heterologous transformation of Zalerion arboricola. Curr Genet 26:217–224

    PubMed  CAS  Google Scholar 

  • Kistler HC, Benny UK (1988) Genetic transformation of the fungal pathogen Fusarium oxysporum. Curr Genet 13:145–149

    CAS  Google Scholar 

  • Klein TM, Wolf ED, Wu R, Sanford JC (1987) High velocity microprojectiles for delivering nucleic acids into living cells. Nature 327:70–73

    CAS  Google Scholar 

  • Kolar M, Punt PJ, van den Hondel CA, Schwab H (1988) Transformation of Penicillium chrysogenum using dominant selection markers and expression of an Escherichia coli lacZ fusion gene. Gene 62:127–134

    PubMed  CAS  Google Scholar 

  • Kooistra R, Hooykaas PJ, Steensma HY (2004) Efficient gene targeting in Kluyveromyces lactis. Yeast 21:781–792

    PubMed  CAS  Google Scholar 

  • Kos A, Kuijvenhoven J, Wernars K, Bos CJ, van den Broek HW, Pouwels PH, van den Hondel CA (1985) Isolation and characterization of the Aspergillus niger trpC gene. Gene 39:231–238

    PubMed  CAS  Google Scholar 

  • Kosalková K, Marcos AT, Fierro F, Hernando-Rico V, Gutiérrez S, Martín JF (2000) A novel heptameric sequence (TTAGTAA) is the binding site for a protein required for high level expression of pcbAB, the first gene of the penicillin biosynthesis in Penicillium chrysogenum. J Biol Chem 275:2423–2430

    PubMed  Google Scholar 

  • Kosalková K, Rodríguez-Sáiz M, Barredo JL, Martín JF (2007) Binding of the PTA1 transcriptional activator to the divergent promoter region of the Wrst two genes of the penicillin pathway in different Penicillium species. Curr Genet 52:229–237

    PubMed  Google Scholar 

  • Kosalková K, García-Estrada C, Ullán RV, Godio RP, Feltrer R, Teijeira F, Mauriz E, Martín FF (2009) The global regulator LaeA controls penicillin biosynthesis, pigmentation and sporulation, but not roquefortine C synthesis in Penicillium chrysogenum. Biochimie 91:214–225

    PubMed  Google Scholar 

  • Krappmann S, Sasse C, Braus GH (2006) Gene targeting in Aspergillus fumigatus by homologous recombination is facilitated in a nonhomologous end-joining-deficient genetic background. Eukaryot Cell 5:212–215

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kuroda M, Hashida-Okado T, Ysumoto R, Gomi K, Kato I, Takesato K (1999) An aureobasidin A resistance gene isolated from Aspergillus is a homolog of yeast AUR1, a gene responsible for inositol phosphorylceramide (IPC) synthetase activity. Mol Gen Genet 261:290–296

    PubMed  CAS  Google Scholar 

  • Lakrod K, Chaisrisook C, Skinner DZ (2003) Expression of pigmentation genes following electroporation of albino Monascus purpureus. J Ind Microbiol Biotechnol 30:369–374

    PubMed  CAS  Google Scholar 

  • Liu G, Casqueiro J, Bañuelos O, Cardoza RE, Gutiérrez S, Martín JF (2001) Targeted inactivation of the mecB gene, encoding cystathionine-gamma-lyase, shows that the reverse transsulfuration pathway is required for high-level cephalosporin biosynthesis in Acremonium chrysogenum C10 but not for methionine induction of the cephalosporin genes. J Bacteriol 183:1765–1772

    PubMed  CAS  PubMed Central  Google Scholar 

  • Machida M, Asai K, Sano M, Tanaka T, Kumagai T, Terai G, Kusumoto K, Arima T, Akita O, Kashiwagi Y, Abe K, Gomi K, Horiuchi H, Kitamoto K, Kobayashi T, Takeuchi M, Denning DW, Galagan JE, Nierman WC, Yu J, Archer DB, Bennett JW, Bhatnagar D, Cleveland TE, Fedorova ND, Gotoh O, Horikawa H, Hosoyama A, Ichinomiya M, Igarashi R, Iwashita K, Juvvadi PR, Kato M, Kato Y, Kin T, Kokubun A, Maeda H, Maeyama N, Maruyama J, Nagasaki H, Nakajima T, Oda K, Okada K, Paulse I, Sakamoto K, Sawano T, Takahashi M, Takase K, Terabayashi Y, Wortman JR, Yamada O, Yamagata Y, Anazawa H, Hata Y, Koide Y, Komori T, Koyama Y, Minetoki T, Suharnan S, Tanaka A, Isono K, Kuhara S, Ogasawara N, Kikuchi H (2005) Genome sequencing and analysis of Aspergillus oryzae. Nature 438(7071):1157–1161

    PubMed  Google Scholar 

  • Malardier L, Daboussi MJ, Julien J, Roussel F, Scazzocchio C, Brygoo Y (1989) Cloning of the nitrate reductase gene (niaD) of Aspergillus nidulans and its use for transformation of Fusarium oxysporum. Gene 78:147–156

    PubMed  CAS  Google Scholar 

  • Malonek S, Meinhardt F (2001) Agrobacterium tumefaciens-mediated genetic transformation of the phytopathogenic ascomycete Calonectria morganii. Curr Genet 40:152–155

    PubMed  CAS  Google Scholar 

  • Martín JF, Nicolás G, Villanueva JR (1973) Chemical changes in the cell walls of conidia of Penicillium notatum during germination. Can J Microbiol 19:789–796

    PubMed  Google Scholar 

  • Maruyama J, Kitamoto K (2008) Multiple gene disruptions by marker recycling with highly efficient gene-targeting background (DeltaligD) in Aspergillus oryzae. Biotechnol Lett 30:1811–1817

    PubMed  CAS  Google Scholar 

  • Meyer V, Mueller D, Strowig T, Stahl U (2003) Comparison of different transformation methods for Aspergillus giganteus. Curr Genet 43:371–377

    PubMed  CAS  Google Scholar 

  • Meyer V, Arentshorst M, El-Ghezal A, Drews AC, Kooistra R, van den Hondel CA, Ram AF (2007) Highly efficient gene targeting in the Aspergillus niger kusA mutant. J Biotechnol 128:770–775

    PubMed  CAS  Google Scholar 

  • Moreno MA, Pascual C, Gibello A, Ferrer S, Bos CJ, Debets AJ, Suárez G (1994) Transformation of Aspergillus parasiticus using autonomously replicating plasmids from Aspergillus nidulans. FEMS Microbiol Lett 124:35–41

    PubMed  CAS  Google Scholar 

  • Nayak T, Szewczyk E, Oakley CE, Osmani A, Ukil L, Murray SL, Osmani SA, Oakley BR (2006) A versatile and efficient gene-targeting system for Aspergillus nidulans. Genetics 172:1557–1566

    PubMed  CAS  PubMed Central  Google Scholar 

  • Nielsen JB, Nielsen ML, Mortensen UH (2008) Transient disruption of non-homologous end-joining facilitates targeted genome manipulations in the filamentous fungus Aspergillus nidulans. Fungal Genet Biol 45(3):165–170

    PubMed  CAS  Google Scholar 

  • Ninomiya Y, Suzuki K, Ishii C, Inoue H (2004) Highly efficient gene replacements in Neurospora strains deficient for nonhomologous end-joining. Proc Natl Acad Sci U S A 101:12248–12253

    PubMed  CAS  PubMed Central  Google Scholar 

  • Orbach MJ, Porro EB, Yanofsky C (1986) Cloning and characterization of the gene for beta-tubulin from a benomyl-resistant mutant of Neurospora crassa and its use as a dominant selectable marker. Mol Cell Biol 6:2452–2461

    PubMed  CAS  PubMed Central  Google Scholar 

  • Orr-Weaver TL, Szostak JW, Rothstein RJ (1981) Yeast transformation: a model system for the study of recombination. Proc Natl Acad Sci U S A 78:6354–6358

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ozeki K, Kyoya F, Hizume K, Kanda A, Hamachi M, Nunokawa Y (1994) Transformation of intact Aspergillus niger by electroporation. Biosci Biotechnol Biochem 58:2224–2227

    PubMed  CAS  Google Scholar 

  • Palmer JM, Keller NP (2010) Secondary metabolism in fungi: does chromosomal location matter? Curr Opin Microbiol 13:431–436

    PubMed  CAS  PubMed Central  Google Scholar 

  • Pastwa E, Błasiak J (2003) Non-homologous DNA end joining. Acta Biochim Pol 50:891–908

    PubMed  CAS  Google Scholar 

  • Peberdy JF (1979) Fungal protoplasts: isolation, reversion, and fusion. Annu Rev Microbiol 33:21–39

    PubMed  CAS  Google Scholar 

  • Penttila ME, Nevalainene KMH, Raynal A, Knowles JC (1984) Cloning of Aspergillus niger genes in yeast. Expression of the gene coding Aspergillus β-glucosidase. Mol Gen Genet 194:494–499

    CAS  Google Scholar 

  • Picknett TM, Saunders G, Ford P, Holt G (1987) Development of a gene transfer system for Penicillium chrysogenum. Curr Genet 12:449–455

    CAS  Google Scholar 

  • Punt PJ, Oliver RP, Dingemanse MA, Pouwels PH, van den Hondel CA (1987) Transformation of Aspergillus based on the hygromycin B resistance marker from Escherichia coli. Gene 56:117–124

    PubMed  CAS  Google Scholar 

  • Queener SW, Ingolia TD, Skatrud PL, Chapman JL, Kaster KR (1985) A system for genetic transformation of Cephalosporium acremonium. In: Schlesinger D (ed) Microbiology. ASM, Washington, DC, pp 268–472

    Google Scholar 

  • Rambosek J, Leach J (1987) Recombinant DNA in filamentous fungi: progress and prospects. Crit Rev Biotechnol 6:357–393

    PubMed  CAS  Google Scholar 

  • Roncero MI, Jepsen LP, Strøman P, van Heeswijck R (1989) Characterization of a leuA gene and an ARS element from Mucor circinelloides. Gene 84:335–343

    PubMed  CAS  Google Scholar 

  • Ruiter-Jacobs YM, Broekhuijsen M, Unkles SE, Campbell EI, Kinghorn JR, Contreras R, Pouwels PH, van den Hondel CA (1989) A gene transfer system based on the homologous pyrG gene and efficient expression of bacterial genes in Aspergillus oryzae. Curr Genet 16:159–163

    PubMed  Google Scholar 

  • Ruiz-Diez B (2002) Strategies for the transformation of filamentous fungi. J Appl Microbiol 92:189–195

    PubMed  CAS  Google Scholar 

  • Sánchez F, Lozano M, Rubio V, Peñalva MA (1987) Transformation in Penicillium chrysogenum. Gene 51:97–102

    PubMed  Google Scholar 

  • Sánchez-Fernández R, Unkles SE, Campbell EI, Macro JA, Cerdà-Olmedo E, Kinghorn JR (1991) Transformation of the filamentous fungus Gibberella fujikuroi using the Aspergillus niger niaD gene encoding nitrate reductase. Mol Gen Genet 225(2):231–233

    PubMed  Google Scholar 

  • Saunders G, Tuite MF, Holt G (1986) Fungal cloning vectors. Trends Biotechnol 4:93–98

    CAS  Google Scholar 

  • Schechtman MG, Yanofsky C (1983) Structure of the trifunctional trp-1 gene from Neurospora crassa and its aberrant expression in Escherichia coli. J Mol Appl Genet 2:83–99

    PubMed  CAS  Google Scholar 

  • Schiestl RH, Petes TD (1991) Integration of DNA fragments by illegitimate recombination in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 88:7585–7589

    PubMed  CAS  PubMed Central  Google Scholar 

  • Shimizu T, Kinoshita H, Nihira T (2006) Development of transformation system in Monascus purpureus using an autonomous replication vector with aureobasidin A resistance gene. Biotechnol Lett 28:115–120

    PubMed  CAS  Google Scholar 

  • Shiotani H, Tsuge T (1995) Efficient gene targeting in the filamentous fungus Alternaria alternata. Mol Gen Genet 248:142–150

    PubMed  CAS  Google Scholar 

  • Shwab EK, Bok JW, Tribus M, Galehr J, Graessle S, Keller NP (2007) Histone deacetylase activity regulates chemical diversity in Aspergillus. Eukaryot Cell 6:1656–1664

    PubMed  CAS  PubMed Central  Google Scholar 

  • Skatrud PL, Queener SW, Carr LG, Fisher DL (1987) Efficient integrative transformation of Cephalosporium acremonium. Curr Genet 12:337–343

    PubMed  CAS  Google Scholar 

  • Snoek ISI, van der Krogt ZA, Touw H, Kerkman R, Pronk JT, Bovenberg RAL, van den Berg MA, Daran JM (2009) Construction of an hdfA Penicillium chrysogenum strain impaired in non-homologous end-joining and analysis of its potential for functional analysis studies. Fungal Genet Biol 46:418–426

    PubMed  CAS  Google Scholar 

  • Stahl U, Leitner E, Esser K (1987) Transformation of Penicillium chrysogenum by a vector containing a mitochondrial origin of replication. Appl Microbiol Biotechnol 26:237–241

    CAS  Google Scholar 

  • Stinchcomb DT, Struhl K, Davies RW (1979) Isolation and characterization of a yeast chromosomal replicator. Nature 282:39–43

    PubMed  CAS  Google Scholar 

  • Takahashi T, Masuda T, Koyama Y (2006) Enhanced gene targeting frequency in ku70 and ku80 disruption mutants of Aspergillus sojae and Aspergillus oryzae. Mol Genet Genomics 275:460–470

    PubMed  CAS  Google Scholar 

  • Tilburn J, Scazzocchio C, Taylor GG, Zabicky-Zissman JH, Lockington RA, Davies RW (1983) Transformation by integration in Aspergillus nidulans. Gene 26:205–221

    PubMed  CAS  Google Scholar 

  • Tudzynski P, Stahl U, Esser K (1980) Transformation to senescence with plasmids-like DNA in the Ascomycete Podospora anserina. Curr Genet 2:181

    PubMed  CAS  Google Scholar 

  • Turgeon BG, Garber RC, Yoder OC (1985) Transformation of the maize pathogen Cochliobolus heterostrophus using the Aspergillus nidulans amdS gene. Mol Gen Genet 201:450–453

    CAS  Google Scholar 

  • Ullan RV, Casqueiro J, Bañuelos O, Fernandez FJ, Gutiérrez S, Martín JF (2002) A novel epimerization system in fungal secondary metabolism involved in the conversion of isopenicillin N into penicillin N in Acremonium chrysogenum. J Biol Chem 277:46216–46225

    PubMed  CAS  Google Scholar 

  • Ulrich RC, Novotny CP, Specht CA, Froelinger EH, Muñoz-Rivas AM (1985) Transforming basidiomycetes. In: Timberlake WE (ed) Molecular genetics of filamentous fungi. Alan R. Liss, New York, p 39

    Google Scholar 

  • Unkles SE, Campbell EI, Carrez D, Grieve C, Contreras R, Fiers W, Van den Hondel CA, Kinghorn JR (1989a) Transformation of Aspergillus niger with the homologous nitrate reductase gene. Gene 78:157–166

    PubMed  CAS  Google Scholar 

  • Unkles SE, Campbell EI, Ruiter-Jacobs YMJT, Broekhuijsen M, Macro JA, Carrez C, Contreras R, Van den Hondel CA, Kinghorn JR (1989b) The development of a homologous transformation system for Aspergillus oryzae based on the nitrate assimilation pathway: a convenient and general selection system for filamentous fungal transformation. Mol Gen Genet 218:99–104

    CAS  Google Scholar 

  • Van den Homberg JPTW, MacCabe AP, van der Vondervoort PJI, Visser J (1996) Regulation of acid phosphatases in an Aspergillus niger pacC disruption strain. Mol Gen Genet 251:542–550

    Google Scholar 

  • Villanueva JR, García-Acha I (1971) Production and use of fungal protoplasts. In: Booth C (ed) Methods in microbiology, vol 4. Academic, New York, pp 665–718

    Google Scholar 

  • Walz M, Kuck U (1993) Targeted integration into the Acremonium chyrsogenum genome: disruption of the pcbC gene. Curr Genet 24:421–427

    PubMed  CAS  Google Scholar 

  • Ward M, Wilkinson B, Turner G (1986) Transformation of Aspergillus nidulans with a cloned, oligomycin-resistant ATP synthase subunit 9 gene. Mol Gen Genet 202:265–270

    PubMed  CAS  Google Scholar 

  • Weiss RL, Puetz D, Cubis J (1985) Expression of Aspergillus genes in Neurospora. In: Bennet JW, Lasure LL (eds) Manipulation of fungi. Academic, New York, p 280

    Google Scholar 

  • Whitehead MP, Unkles SE, Ramsden M, Campbell EI, Gurr SJ, Spence D, van der Hondel CA, Contreras R, Kinghorn JR (1989) Transformation of a nitrate reductase deficient mutant of Penicillium chrysogenum with the corresponding Aspergillus niger and A. nidulans niaD genes. Mol Gen Genet 216:408–411

    CAS  Google Scholar 

  • Williamson DH (1985) The yeast ARS element, six years on: a progress report. Yeast 1:1–14

    PubMed  CAS  Google Scholar 

  • Woloshuk CP, Seip ER, Payne GA, Adkins CR (1989) Genetic transformation system for the aflatoxin-producing fungus Aspergillus flavus. Appl Environ Microbiol 55:86–90

    PubMed  CAS  PubMed Central  Google Scholar 

  • Yelton MM, Hamer JE, Timberlake WE (1984) Transformation of Aspergillus nidulans by using a trpC plasmid. Proc Natl Acad Sci U S A 81:1470–1474

    PubMed  CAS  PubMed Central  Google Scholar 

  • Yoder OC, Weltring K, Turgeon BG, van Etten HD (1986) Technology for molecular cloning of fungal virulence genes. In: Bailey JA (ed) Biology and molecular biology of plant-pathogen interactions. Springer, Berlin, p 371

    Google Scholar 

  • Zwiers LH, de Waard MA (2001) Efficient Agrobacterium tumefaciens-mediated gene disruption in the phytopathogen Mycosphaerella graminicola. Curr Genet 39:388–393

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

I acknowledge the help of Dr. Paloma Liras for valuable scientific discussions on the manuscript and the initial scientific collaboration on fungal transformation of Drs. J.M. Cantoral, J.L. Barredo, B. Díez, S. Gutiérrez, F. Fierro, J. Casqueiro, O. Bañuelos, G. Liu and K. Kosalková.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan F. Martín Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Martín, J.F. (2015). Fungal Transformation: From Protoplasts to Targeted Recombination Systems. In: van den Berg, M., Maruthachalam, K. (eds) Genetic Transformation Systems in Fungi, Volume 1. Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-319-10142-2_1

Download citation

Publish with us

Policies and ethics