Fungal Transformation: From Protoplasts to Targeted Recombination Systems

  • Juan F. MartínEmail author
Part of the Fungal Biology book series (FUNGBIO)


Transformation of fungi is required for understanding their molecular biology and for manipulation of strains of industrial interest. The development of efficient transformation systems has been hampered by the extreme diversity of ascomycetes, basidiomycetes, and zygomycetes. Polyethylene glycol-assisted transformation of fungal protoplasts is the most widely used system but alternative procedures, e.g., electroporation and Agrobacterium tumefaciens-mediated transformation have been developed.

Most transformation procedures rely on integrative vectors, but AMA1-containing vectors that replicate autonomously are available. Exogenous DNA integrates frequently at nonhomologous sites in the genome. This is a problem for targeted gene disruption and for quantifying gene expression. Procedures for directed integration of a single plasmid copy at a specific locus in the genome have been developed.

Mutants of different fungi impaired in the NHEJ system allowed to select recombinants at homologous sites with high efficiency. These advances have contributed significantly to the progress in the molecular biology of fungi.


Fungal transformation Selective markers AMA1-replicating plasmids Agrobacterium-mediated transformation Homologous and nonhomologous recombination Targeted integration Nonhomologous end joining 



I acknowledge the help of Dr. Paloma Liras for valuable scientific discussions on the manuscript and the initial scientific collaboration on fungal transformation of Drs. J.M. Cantoral, J.L. Barredo, B. Díez, S. Gutiérrez, F. Fierro, J. Casqueiro, O. Bañuelos, G. Liu and K. Kosalková.


  1. Akins RA, Lambowitz AM (1985) General method for cloning Neurospora crassa nuclear genes by complementation of mutants. Mol Cell Biol 5:2272–2278PubMedPubMedCentralGoogle Scholar
  2. Aleksenko A, Clutterbuck AJ (1996) The plasmid replicator AMA1 in Aspergillus nidulans is an inverted duplication of a low copy number dispersed genomic repeat. Mol Microbiol 19:565–574PubMedGoogle Scholar
  3. Aleksenko A, Clutterbuck AJ (1997) Autonomous plasmid replication in Aspergillus nidulans: AMA1 and MATE elements. Fungal Genet Biol 21:373–387PubMedGoogle Scholar
  4. Aleksenko A, Makarova N, Nikolaev I, Clutterbuck AJ (1995) Integrative and replicative transformation of Penicillium canescens with a heterologous nitrate-reductase gene. Curr Genet 28:474–477PubMedGoogle Scholar
  5. Anaya N, Roncero MI (1991) Transformation of a methionine auxotrophic mutant of Mucor circinelloides by direct cloning of the corresponding wild type gene. Mol Gen Genet 230:449–455PubMedGoogle Scholar
  6. Anné J (1977) Somatic hybridization between Penicillium species after induced fusion of their protoplasts. Agricultura 25:1–117Google Scholar
  7. Ballance DJ, Turner G (1985) Development of a high-frequency transforming vector for Aspergillus nidulans. Gene 36:321–331PubMedGoogle Scholar
  8. Ballance DJ, Turner G (1986) Gene cloning in Aspergillus nidulans: isolation of the isocitrate lyase gene (acuD). Mol Gen Genet 202:271–275PubMedGoogle Scholar
  9. Ballance DJ, Buxton FP, Turner G (1983) Transformation of Aspergillus nidulans by the orotidine-5′-phosphate decarboxylase gene of Neurospora crassa. Biochem Biophys Res Commun 112:284–289PubMedGoogle Scholar
  10. Bañuelos O, Casqueiro J, Gutiérrez S, Martín JF (2001) Intrachromosomal recombination after targeted monocopy integration in Penicillium chrysogenum: stabilization of the direct repeats to prevent loss of the inserted gene. Curr Genet 39:231–236PubMedGoogle Scholar
  11. Bégueret J, Razanamparany V, Perrot M, Barreau C (1984) Cloning gene ura5 for the orotidylic acid pyrophosphorylase of the filamentous fungus Podospora anserina: transformation of protoplasts. Gene 32:487–492PubMedGoogle Scholar
  12. Bej AK, Perlin MH (1989) A high efficiency transformation system for the basidiomycete Ustilago violacea employing hygromycin resistance and lithium-acetate treatment. Gene 80:171–176PubMedGoogle Scholar
  13. Beri RK, Turner G (1987) Transformation of Penicillium chrysogenum using the Aspergillus nidulans amdS gene as a dominant selective marker. Curr Genet 11:639–641PubMedGoogle Scholar
  14. Binninger DM, Skrzynia C, Pukkila PJ, Casselton LA (1987) DNA-mediated transformation of the basidiomycete Coprinus cinereus. EMBO J 6:835–840PubMedPubMedCentralGoogle Scholar
  15. Bird D, Bradshaw R (1997) Gene targeting is locus dependent in the filamentous fungus Aspergillus nidulans. Mol Gen Genet 255:219–225PubMedGoogle Scholar
  16. Bok JW, Noordermeer D, Kale SP, Keller NP (2006) Secondary metabolic gene cluster silencing in Aspergillus nidulans. Mol Microbiol 61:1636–1645PubMedGoogle Scholar
  17. Bowen JK, Templeton MD, Sharrock KR, Crowhust RN, Rikkerink EHA (1995) Gene inactivation in the plant pathogen Glomerella cingulata: three strategies for the disruption of the pectin gene plnA. Mol Gen Genet 246:196–205PubMedGoogle Scholar
  18. Brückner B, Unkles SE, Weltring K, Kinghorn JR (1992) Transformation of Gibberella fujikuroi: effect of the Aspergillus nidulans AMA1 sequence on frequency and integration. Curr Genet 22:313–316PubMedGoogle Scholar
  19. Bull JH, Smith DJ, Turner G (1988) Transformation of Penicillium chrysogenum with a dominant selectable marker. Curr Genet 13:377–382PubMedGoogle Scholar
  20. Bundock P, den Dulk-Ras A, Beijersbergen A, Hooykaas PJ (1995) Trans-kingdom T-DNA transfer from Agrobacterium tumefaciens to Saccharomyces cerevisiae. EMBO J 14:3206–3214PubMedPubMedCentralGoogle Scholar
  21. Buxton FP, Radford A (1983) Cloning of the structural gene for orotidine 5′-phosphate carboxylase of Neurospora crassa by expression in Escherichia coli. Mol Gen Genet 190:403–405PubMedGoogle Scholar
  22. Buxton FP, Gwynne DI, Davies RW (1985) Transformation of Aspergillus niger using the argB gene of Aspergillus nidulans. Gene 37:207–214PubMedGoogle Scholar
  23. Calmels T, Parriche M, Durand H, Tiraby G (1991) High efficiency transformation of Tolypocladium geodes conidiospores to phleomycin resistance. Curr Genet 20:309–314PubMedGoogle Scholar
  24. Campoy S, Pérez F, Martín JF, Gutiérrez S, Liras P (2003) Stable transformants of the azaphilone pigment-producing Monascus purpureus obtained by protoplast transformation and Agrobacterium-mediated DNA transfer. Curr Genet 43:447–452PubMedGoogle Scholar
  25. Cantoral MJ, Diez B, Barredo JL, Alvarez E, Martín JF (1987) High frequency transformation of Penicillium chrysogenum. Nat Biotechnol 5:494–497Google Scholar
  26. Cantoral JM, Barredo JL, Alvarez E, Díez B, Martín JF (1988) Nucleotide sequence of the Penicillium chrysogenum pyrG (orotidine-5′-phosphate decarboxylase) gene. Nucleic Acids Res 16:8177PubMedPubMedCentralGoogle Scholar
  27. Carramolino L, Lozano M, Pérez-Aranda A, Rubio V, Sánchez F (1989) Transformation of Penicillium chrysogenum to sulfonamide resistance. Gene 77:31–38PubMedGoogle Scholar
  28. Casqueiro J, Gutiérrez S, Bañuelos O, Hijarrubia MJ, Martín JF (1999a) Gene targeting in Penicillium chrysogenum: disruption of the lys2 gene leads to penicillin overproduction. J Bacteriol 181:1181–1188PubMedPubMedCentralGoogle Scholar
  29. Casqueiro J, Bañuelos O, Gutiérrez S, Hijarrubia MJ, Martín JF (1999b) Intrachromosomal recombination between direct repeats in Penicillium chrysogenum: gene conversion and deletion events. Mol Gen Genet 261:994–1000PubMedGoogle Scholar
  30. Chakraborty BN, Patterson NA, Kapoor M (1991) An electroporation-based system for high-efficiency transformation of germinated conidia of filamentous fungi. Can J Microbiol 37:858–863PubMedGoogle Scholar
  31. Chang PK (2008) A highly efficient gene-targeting system for Aspergillus parasiticus. Lett Appl Microbiol 46:587–592PubMedGoogle Scholar
  32. Chen X, Stone M, Schlagnhaufer C, Romaine CP (2000) A fruiting body tissue method for efficient Agrobacterium-mediated transformation of Agaricus bisporus. Appl Environ Microbiol 66:4510–4513PubMedPubMedCentralGoogle Scholar
  33. Cooley RN, Shaw RK, Franklin FCH, Caten CE (1988) Transformation of the phytopathogenic fungus Septoria nodorum to hygromycin B resistance. Curr Genet 13:383–389Google Scholar
  34. Daboussi MJ, Djeballi A, Gerlinger C, Blaiseau PL, Bouvier I, Cassan M, Lebrun MH, Parisot D, Brygoo Y (1989) Transformation of seven species of filamentous fungi using the nitrate reductase gene of Aspergillus nidulans. Curr Genet 15:453–456PubMedGoogle Scholar
  35. de Groot MJ, Bundock P, Hooykaas PJ, Beijersbergen AG (1998) Agrobacterium tumefaciens-mediated transformation of filamentous fungi. Nat Biotechnol 16:839–842PubMedGoogle Scholar
  36. Dhawale SS, Marzluf GA (1985) Transformation of Neurospora crassa with circular and linear DNA and analysis of the fate of the transforming DNA. Curr Genet 10:205–212PubMedGoogle Scholar
  37. Díez B, Alvarez E, Cantoral JM, Barredo JL, Martín JF (1987) Selection and characterization of pyrG mutants of Penicillium chrysogenum lacking orotidine-5′-phosphate decarboxylase and complementation by the pyr4 gene of Neurospora crassa. Curr Genet 12:277–282Google Scholar
  38. Durand N, Reymond P, Fèvre M (1991) Transformation of Penicillium roqueforti to phleomycin and to hygromycin B-resistance. Curr Genet 19:149–153Google Scholar
  39. Engelenburg V, Smith R, Goosent T, van den Browk H, Tudzynski P (1989) Transformation of Claviceps purpurea using a bleomycin resistance gene. Appl Microbiol Biotechnol 30:364–370Google Scholar
  40. Fernández-Bodega MA, Mauriz E, Gómez A, Martín JF (2009) Proteolytic activity, mycotoxins and andrastin A in Penicillium roqueforti strains isolated from Cabrales, Valdeón and Bejes-Tresviso local varieties of blue-veined cheeses. Int J Food Microbiol 136:18–25PubMedGoogle Scholar
  41. Fierro F, Kosalková K, Gutiérrez S, Martín JF (1996) Autonomously replicating plasmids carrying the AMA1 region in Penicillium chrysogenum. Curr Genet 29:482–489PubMedGoogle Scholar
  42. Fierro F, Laich F, García-Rico RO, Martín JF (2004) High efficiency transformation of Penicillium nalgiovense with integrative and autonomously replicating plasmids. Int J Food Microbiol 90:237–248PubMedGoogle Scholar
  43. Gascón S, Villanueva JR (1964) Extracellular lytic enzymes of Micromonospora. Can J Microbiol 10:301–303PubMedGoogle Scholar
  44. Gasser SM (1991) Replication origins, factors and attachement sites. Curr Opin Cell Biol 3:407–413PubMedGoogle Scholar
  45. Gatignol A, Baron M, Tiraby G (1987) Phleomycin resistance encoded by the ble gene from transposon Tn 5 as a dominant selectable marker in Saccharomyces cerevisiae. Mol Gen Genet 207:342–348PubMedGoogle Scholar
  46. Geisen R, Leistner L (1989) Transformation of Penicillium nalgiovense with the amdS gene of Aspergillus nidulans. Curr Genet 15:307–309Google Scholar
  47. Gems DH, Clutterbuck AJ (1993) Co-transformation with autonomous-replicating helper plasmids facilitates gene cloning from an Aspergillus nidulans gene library. Curr Genet 24:520–524PubMedGoogle Scholar
  48. Gems DH, Johnstone IL, Clutterbuck AJ (1991) An autonomously replicating plasmid transforms Aspergillus nidulans at high frequency. Gene 98:61–67PubMedGoogle Scholar
  49. Godio RP, Fouces R, Gudiña EJ, Martín JF (2004) Agrobacterium tumefaciens-mediated transformation of the antitumor clavaric acid-producing basidiomycete Hypholoma sublateritium. Curr Genet 46:287–294PubMedGoogle Scholar
  50. Gouka RJ, van Hartingsveldt W, Bovenberg RA, van den Hondel CA, van Gorcom RF (1991) Cloning of the nitrate-nitrite reductase gene cluster of Penicillium chrysogenum and use of the niaD gene as a homologous selection marker. J Biotechnol 20(2):189–199PubMedGoogle Scholar
  51. Gouka RJ, van Hartingsveldt W, Bovenberg RA, van Zeijl CM, van den Hondel CA, van Gorcom RF (1993) Development of a new transformant selection system for Penicillium chrysogenum: isolation and characterization of the P. chrysogenum acetyl-coenzyme A synthetase gene (facA) and its use as a homologous selection marker. Appl Microbiol Biotechnol 38:514–519PubMedGoogle Scholar
  52. Gouka RJ, Gerk C, Hooykaas PJ, Bundock P, Musters W, Verrips CT, de Groot MJ (1999) Transformation of Aspergillus awamori by Agrobacterium tumefaciens-mediated homologous recombination. Nat Biotechnol 17:598–601PubMedGoogle Scholar
  53. Gutiérrez S, Marcos AT, Casqueiro J, KosaIkova K, Fernández FJ, Velasco J, Martín JF (1999) Transcription of the pcbAB, pcbC and penDE genes of Penicillium chrysogenum AS-P-78 is repressed by glucose and the repression is not reversed by alkaline pHs. Microbiology 145:317–324PubMedGoogle Scholar
  54. Haarmann T, Lorenz N, Tudzynski P (2008) Use of a nonhomologous end joining deficient strain (Deltaku70) of the ergot fungus Claviceps purpurea for identification of a nonribosomal peptide synthetase gene involved in ergotamine biosynthesis. Fungal Genet Biol 45:35–44PubMedGoogle Scholar
  55. Hanif M, Pardo AG, Gorfer M, Raudaskoski M (2002) T-DNA transfer and integration in the ectomycorrhizal fungus Suillus bovinus using hygromycin B as a selectable marker. Curr Genet 41:183–188PubMedGoogle Scholar
  56. Hazell BW, Te’o VS, Bradner JR, Bergquist PL, Nevalainen KM (2000) Rapid transformation of high cellulose producing mutant strains of Trichoderma reesei by microprojectile bombardment. Lett Appl Microbiol 30:282–286PubMedGoogle Scholar
  57. Hinnen A, Hick SJB, Fink GR (1978) Transformation of yeast chimeric ColE1 plasmid carrying LEU2. Proc Natl Acad Sci U S A 75:1929–1933PubMedPubMedCentralGoogle Scholar
  58. Hoskins JA, O’Callaghan N, Queener SW, Cantwell CA, Wood JS, Chen VJ, Skatrud PL (1990) Gene disruption of the pcbAB gene encoding ACV synthetase in Cephalosporium acremonium. Curr Genet 18:523–530PubMedGoogle Scholar
  59. Hynes MJ (1979) Fine structure mapping of the acetamidase structural gene and its controlling region in Aspergillus nidulans. Genetics 91:381–392PubMedPubMedCentralGoogle Scholar
  60. Hynes MJ, Corrick CM, King JA (1983) Isolation of genomic clones containing the amdS gene of Aspergillus nidulans and their use in the analysis of structural and regulatory mutations. Mol Cell Biol 3:1430–1439PubMedPubMedCentralGoogle Scholar
  61. Ishibashi K, Suzuki K, Ando Y, Takakura C, Inoue H (2006) Nonhomologous chromosomal integration of foreign DNA is completely dependent on MUS-53 (humanLig4homolog) in Neurospora. Proc Natl Acad Sci U S A 103:14871–14876PubMedPubMedCentralGoogle Scholar
  62. Isogai T, Yoshida M, Tanaka M, Aoki H (1987) Transformation of Acremonium chrysogenum and Saccharomyces cerevisiae using an antibiotic resistance marker. Agric Biol Chem 51:2321–2329Google Scholar
  63. Jami MS, Barreiro C, García-Estrada C, Martín JF (2010a) Proteome analysis of the penicillin producer Penicillium chrysogenum: characterization of protein changes during the industrial strain improvement. Mol Cell Proteomics 9:1182–1198PubMedPubMedCentralGoogle Scholar
  64. Jami MS, García-Estrada C, Barreiro C, Cuadrado AA, Salehi-Najafabadi Z, Martín JF (2010b) The Penicillium chrysogenum extracellular proteome. Conversion from a food-rotting strain to a versatile cell factory for white biotechnology. Mol Cell Proteomics 9:2729–2744PubMedPubMedCentralGoogle Scholar
  65. John MA, Peberdy JF (1984) Transformation of Aspergillus nidulans using the argB gene. Enzyme Microb Technol 6:386–389Google Scholar
  66. Kelly JM, Hynes MJ (1985) Transformation of Aspergillus niger by the amdS gene of Aspergillus nidulans. EMBO J 4:475–479PubMedPubMedCentralGoogle Scholar
  67. Kelly JM, Hynes MJ (1987) Multiple copies of the amdS gene of Aspergillus nidulans cause titration of trans-acting regulatory proteins. Curr Genet 12:21–31PubMedGoogle Scholar
  68. Kelly R, Register E, Sosa M (1994) Heterologous transformation of Zalerion arboricola. Curr Genet 26:217–224PubMedGoogle Scholar
  69. Kistler HC, Benny UK (1988) Genetic transformation of the fungal pathogen Fusarium oxysporum. Curr Genet 13:145–149Google Scholar
  70. Klein TM, Wolf ED, Wu R, Sanford JC (1987) High velocity microprojectiles for delivering nucleic acids into living cells. Nature 327:70–73Google Scholar
  71. Kolar M, Punt PJ, van den Hondel CA, Schwab H (1988) Transformation of Penicillium chrysogenum using dominant selection markers and expression of an Escherichia coli lacZ fusion gene. Gene 62:127–134PubMedGoogle Scholar
  72. Kooistra R, Hooykaas PJ, Steensma HY (2004) Efficient gene targeting in Kluyveromyces lactis. Yeast 21:781–792PubMedGoogle Scholar
  73. Kos A, Kuijvenhoven J, Wernars K, Bos CJ, van den Broek HW, Pouwels PH, van den Hondel CA (1985) Isolation and characterization of the Aspergillus niger trpC gene. Gene 39:231–238PubMedGoogle Scholar
  74. Kosalková K, Marcos AT, Fierro F, Hernando-Rico V, Gutiérrez S, Martín JF (2000) A novel heptameric sequence (TTAGTAA) is the binding site for a protein required for high level expression of pcbAB, the first gene of the penicillin biosynthesis in Penicillium chrysogenum. J Biol Chem 275:2423–2430PubMedGoogle Scholar
  75. Kosalková K, Rodríguez-Sáiz M, Barredo JL, Martín JF (2007) Binding of the PTA1 transcriptional activator to the divergent promoter region of the Wrst two genes of the penicillin pathway in different Penicillium species. Curr Genet 52:229–237PubMedGoogle Scholar
  76. Kosalková K, García-Estrada C, Ullán RV, Godio RP, Feltrer R, Teijeira F, Mauriz E, Martín FF (2009) The global regulator LaeA controls penicillin biosynthesis, pigmentation and sporulation, but not roquefortine C synthesis in Penicillium chrysogenum. Biochimie 91:214–225PubMedGoogle Scholar
  77. Krappmann S, Sasse C, Braus GH (2006) Gene targeting in Aspergillus fumigatus by homologous recombination is facilitated in a nonhomologous end-joining-deficient genetic background. Eukaryot Cell 5:212–215PubMedPubMedCentralGoogle Scholar
  78. Kuroda M, Hashida-Okado T, Ysumoto R, Gomi K, Kato I, Takesato K (1999) An aureobasidin A resistance gene isolated from Aspergillus is a homolog of yeast AUR1, a gene responsible for inositol phosphorylceramide (IPC) synthetase activity. Mol Gen Genet 261:290–296PubMedGoogle Scholar
  79. Lakrod K, Chaisrisook C, Skinner DZ (2003) Expression of pigmentation genes following electroporation of albino Monascus purpureus. J Ind Microbiol Biotechnol 30:369–374PubMedGoogle Scholar
  80. Liu G, Casqueiro J, Bañuelos O, Cardoza RE, Gutiérrez S, Martín JF (2001) Targeted inactivation of the mecB gene, encoding cystathionine-gamma-lyase, shows that the reverse transsulfuration pathway is required for high-level cephalosporin biosynthesis in Acremonium chrysogenum C10 but not for methionine induction of the cephalosporin genes. J Bacteriol 183:1765–1772PubMedPubMedCentralGoogle Scholar
  81. Machida M, Asai K, Sano M, Tanaka T, Kumagai T, Terai G, Kusumoto K, Arima T, Akita O, Kashiwagi Y, Abe K, Gomi K, Horiuchi H, Kitamoto K, Kobayashi T, Takeuchi M, Denning DW, Galagan JE, Nierman WC, Yu J, Archer DB, Bennett JW, Bhatnagar D, Cleveland TE, Fedorova ND, Gotoh O, Horikawa H, Hosoyama A, Ichinomiya M, Igarashi R, Iwashita K, Juvvadi PR, Kato M, Kato Y, Kin T, Kokubun A, Maeda H, Maeyama N, Maruyama J, Nagasaki H, Nakajima T, Oda K, Okada K, Paulse I, Sakamoto K, Sawano T, Takahashi M, Takase K, Terabayashi Y, Wortman JR, Yamada O, Yamagata Y, Anazawa H, Hata Y, Koide Y, Komori T, Koyama Y, Minetoki T, Suharnan S, Tanaka A, Isono K, Kuhara S, Ogasawara N, Kikuchi H (2005) Genome sequencing and analysis of Aspergillus oryzae. Nature 438(7071):1157–1161PubMedGoogle Scholar
  82. Malardier L, Daboussi MJ, Julien J, Roussel F, Scazzocchio C, Brygoo Y (1989) Cloning of the nitrate reductase gene (niaD) of Aspergillus nidulans and its use for transformation of Fusarium oxysporum. Gene 78:147–156PubMedGoogle Scholar
  83. Malonek S, Meinhardt F (2001) Agrobacterium tumefaciens-mediated genetic transformation of the phytopathogenic ascomycete Calonectria morganii. Curr Genet 40:152–155PubMedGoogle Scholar
  84. Martín JF, Nicolás G, Villanueva JR (1973) Chemical changes in the cell walls of conidia of Penicillium notatum during germination. Can J Microbiol 19:789–796PubMedGoogle Scholar
  85. Maruyama J, Kitamoto K (2008) Multiple gene disruptions by marker recycling with highly efficient gene-targeting background (DeltaligD) in Aspergillus oryzae. Biotechnol Lett 30:1811–1817PubMedGoogle Scholar
  86. Meyer V, Mueller D, Strowig T, Stahl U (2003) Comparison of different transformation methods for Aspergillus giganteus. Curr Genet 43:371–377PubMedGoogle Scholar
  87. Meyer V, Arentshorst M, El-Ghezal A, Drews AC, Kooistra R, van den Hondel CA, Ram AF (2007) Highly efficient gene targeting in the Aspergillus niger kusA mutant. J Biotechnol 128:770–775PubMedGoogle Scholar
  88. Moreno MA, Pascual C, Gibello A, Ferrer S, Bos CJ, Debets AJ, Suárez G (1994) Transformation of Aspergillus parasiticus using autonomously replicating plasmids from Aspergillus nidulans. FEMS Microbiol Lett 124:35–41PubMedGoogle Scholar
  89. Nayak T, Szewczyk E, Oakley CE, Osmani A, Ukil L, Murray SL, Osmani SA, Oakley BR (2006) A versatile and efficient gene-targeting system for Aspergillus nidulans. Genetics 172:1557–1566PubMedPubMedCentralGoogle Scholar
  90. Nielsen JB, Nielsen ML, Mortensen UH (2008) Transient disruption of non-homologous end-joining facilitates targeted genome manipulations in the filamentous fungus Aspergillus nidulans. Fungal Genet Biol 45(3):165–170PubMedGoogle Scholar
  91. Ninomiya Y, Suzuki K, Ishii C, Inoue H (2004) Highly efficient gene replacements in Neurospora strains deficient for nonhomologous end-joining. Proc Natl Acad Sci U S A 101:12248–12253PubMedPubMedCentralGoogle Scholar
  92. Orbach MJ, Porro EB, Yanofsky C (1986) Cloning and characterization of the gene for beta-tubulin from a benomyl-resistant mutant of Neurospora crassa and its use as a dominant selectable marker. Mol Cell Biol 6:2452–2461PubMedPubMedCentralGoogle Scholar
  93. Orr-Weaver TL, Szostak JW, Rothstein RJ (1981) Yeast transformation: a model system for the study of recombination. Proc Natl Acad Sci U S A 78:6354–6358PubMedPubMedCentralGoogle Scholar
  94. Ozeki K, Kyoya F, Hizume K, Kanda A, Hamachi M, Nunokawa Y (1994) Transformation of intact Aspergillus niger by electroporation. Biosci Biotechnol Biochem 58:2224–2227PubMedGoogle Scholar
  95. Palmer JM, Keller NP (2010) Secondary metabolism in fungi: does chromosomal location matter? Curr Opin Microbiol 13:431–436PubMedPubMedCentralGoogle Scholar
  96. Pastwa E, Błasiak J (2003) Non-homologous DNA end joining. Acta Biochim Pol 50:891–908PubMedGoogle Scholar
  97. Peberdy JF (1979) Fungal protoplasts: isolation, reversion, and fusion. Annu Rev Microbiol 33:21–39PubMedGoogle Scholar
  98. Penttila ME, Nevalainene KMH, Raynal A, Knowles JC (1984) Cloning of Aspergillus niger genes in yeast. Expression of the gene coding Aspergillus β-glucosidase. Mol Gen Genet 194:494–499Google Scholar
  99. Picknett TM, Saunders G, Ford P, Holt G (1987) Development of a gene transfer system for Penicillium chrysogenum. Curr Genet 12:449–455Google Scholar
  100. Punt PJ, Oliver RP, Dingemanse MA, Pouwels PH, van den Hondel CA (1987) Transformation of Aspergillus based on the hygromycin B resistance marker from Escherichia coli. Gene 56:117–124PubMedGoogle Scholar
  101. Queener SW, Ingolia TD, Skatrud PL, Chapman JL, Kaster KR (1985) A system for genetic transformation of Cephalosporium acremonium. In: Schlesinger D (ed) Microbiology. ASM, Washington, DC, pp 268–472Google Scholar
  102. Rambosek J, Leach J (1987) Recombinant DNA in filamentous fungi: progress and prospects. Crit Rev Biotechnol 6:357–393PubMedGoogle Scholar
  103. Roncero MI, Jepsen LP, Strøman P, van Heeswijck R (1989) Characterization of a leuA gene and an ARS element from Mucor circinelloides. Gene 84:335–343PubMedGoogle Scholar
  104. Ruiter-Jacobs YM, Broekhuijsen M, Unkles SE, Campbell EI, Kinghorn JR, Contreras R, Pouwels PH, van den Hondel CA (1989) A gene transfer system based on the homologous pyrG gene and efficient expression of bacterial genes in Aspergillus oryzae. Curr Genet 16:159–163PubMedGoogle Scholar
  105. Ruiz-Diez B (2002) Strategies for the transformation of filamentous fungi. J Appl Microbiol 92:189–195PubMedGoogle Scholar
  106. Sánchez F, Lozano M, Rubio V, Peñalva MA (1987) Transformation in Penicillium chrysogenum. Gene 51:97–102PubMedGoogle Scholar
  107. Sánchez-Fernández R, Unkles SE, Campbell EI, Macro JA, Cerdà-Olmedo E, Kinghorn JR (1991) Transformation of the filamentous fungus Gibberella fujikuroi using the Aspergillus niger niaD gene encoding nitrate reductase. Mol Gen Genet 225(2):231–233PubMedGoogle Scholar
  108. Saunders G, Tuite MF, Holt G (1986) Fungal cloning vectors. Trends Biotechnol 4:93–98Google Scholar
  109. Schechtman MG, Yanofsky C (1983) Structure of the trifunctional trp-1 gene from Neurospora crassa and its aberrant expression in Escherichia coli. J Mol Appl Genet 2:83–99PubMedGoogle Scholar
  110. Schiestl RH, Petes TD (1991) Integration of DNA fragments by illegitimate recombination in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 88:7585–7589PubMedPubMedCentralGoogle Scholar
  111. Shimizu T, Kinoshita H, Nihira T (2006) Development of transformation system in Monascus purpureus using an autonomous replication vector with aureobasidin A resistance gene. Biotechnol Lett 28:115–120PubMedGoogle Scholar
  112. Shiotani H, Tsuge T (1995) Efficient gene targeting in the filamentous fungus Alternaria alternata. Mol Gen Genet 248:142–150PubMedGoogle Scholar
  113. Shwab EK, Bok JW, Tribus M, Galehr J, Graessle S, Keller NP (2007) Histone deacetylase activity regulates chemical diversity in Aspergillus. Eukaryot Cell 6:1656–1664PubMedPubMedCentralGoogle Scholar
  114. Skatrud PL, Queener SW, Carr LG, Fisher DL (1987) Efficient integrative transformation of Cephalosporium acremonium. Curr Genet 12:337–343PubMedGoogle Scholar
  115. Snoek ISI, van der Krogt ZA, Touw H, Kerkman R, Pronk JT, Bovenberg RAL, van den Berg MA, Daran JM (2009) Construction of an hdfA Penicillium chrysogenum strain impaired in non-homologous end-joining and analysis of its potential for functional analysis studies. Fungal Genet Biol 46:418–426PubMedGoogle Scholar
  116. Stahl U, Leitner E, Esser K (1987) Transformation of Penicillium chrysogenum by a vector containing a mitochondrial origin of replication. Appl Microbiol Biotechnol 26:237–241Google Scholar
  117. Stinchcomb DT, Struhl K, Davies RW (1979) Isolation and characterization of a yeast chromosomal replicator. Nature 282:39–43PubMedGoogle Scholar
  118. Takahashi T, Masuda T, Koyama Y (2006) Enhanced gene targeting frequency in ku70 and ku80 disruption mutants of Aspergillus sojae and Aspergillus oryzae. Mol Genet Genomics 275:460–470PubMedGoogle Scholar
  119. Tilburn J, Scazzocchio C, Taylor GG, Zabicky-Zissman JH, Lockington RA, Davies RW (1983) Transformation by integration in Aspergillus nidulans. Gene 26:205–221PubMedGoogle Scholar
  120. Tudzynski P, Stahl U, Esser K (1980) Transformation to senescence with plasmids-like DNA in the Ascomycete Podospora anserina. Curr Genet 2:181PubMedGoogle Scholar
  121. Turgeon BG, Garber RC, Yoder OC (1985) Transformation of the maize pathogen Cochliobolus heterostrophus using the Aspergillus nidulans amdS gene. Mol Gen Genet 201:450–453Google Scholar
  122. Ullan RV, Casqueiro J, Bañuelos O, Fernandez FJ, Gutiérrez S, Martín JF (2002) A novel epimerization system in fungal secondary metabolism involved in the conversion of isopenicillin N into penicillin N in Acremonium chrysogenum. J Biol Chem 277:46216–46225PubMedGoogle Scholar
  123. Ulrich RC, Novotny CP, Specht CA, Froelinger EH, Muñoz-Rivas AM (1985) Transforming basidiomycetes. In: Timberlake WE (ed) Molecular genetics of filamentous fungi. Alan R. Liss, New York, p 39Google Scholar
  124. Unkles SE, Campbell EI, Carrez D, Grieve C, Contreras R, Fiers W, Van den Hondel CA, Kinghorn JR (1989a) Transformation of Aspergillus niger with the homologous nitrate reductase gene. Gene 78:157–166PubMedGoogle Scholar
  125. Unkles SE, Campbell EI, Ruiter-Jacobs YMJT, Broekhuijsen M, Macro JA, Carrez C, Contreras R, Van den Hondel CA, Kinghorn JR (1989b) The development of a homologous transformation system for Aspergillus oryzae based on the nitrate assimilation pathway: a convenient and general selection system for filamentous fungal transformation. Mol Gen Genet 218:99–104Google Scholar
  126. Van den Homberg JPTW, MacCabe AP, van der Vondervoort PJI, Visser J (1996) Regulation of acid phosphatases in an Aspergillus niger pacC disruption strain. Mol Gen Genet 251:542–550Google Scholar
  127. Villanueva JR, García-Acha I (1971) Production and use of fungal protoplasts. In: Booth C (ed) Methods in microbiology, vol 4. Academic, New York, pp 665–718Google Scholar
  128. Walz M, Kuck U (1993) Targeted integration into the Acremonium chyrsogenum genome: disruption of the pcbC gene. Curr Genet 24:421–427PubMedGoogle Scholar
  129. Ward M, Wilkinson B, Turner G (1986) Transformation of Aspergillus nidulans with a cloned, oligomycin-resistant ATP synthase subunit 9 gene. Mol Gen Genet 202:265–270PubMedGoogle Scholar
  130. Weiss RL, Puetz D, Cubis J (1985) Expression of Aspergillus genes in Neurospora. In: Bennet JW, Lasure LL (eds) Manipulation of fungi. Academic, New York, p 280Google Scholar
  131. Whitehead MP, Unkles SE, Ramsden M, Campbell EI, Gurr SJ, Spence D, van der Hondel CA, Contreras R, Kinghorn JR (1989) Transformation of a nitrate reductase deficient mutant of Penicillium chrysogenum with the corresponding Aspergillus niger and A. nidulans niaD genes. Mol Gen Genet 216:408–411Google Scholar
  132. Williamson DH (1985) The yeast ARS element, six years on: a progress report. Yeast 1:1–14PubMedGoogle Scholar
  133. Woloshuk CP, Seip ER, Payne GA, Adkins CR (1989) Genetic transformation system for the aflatoxin-producing fungus Aspergillus flavus. Appl Environ Microbiol 55:86–90PubMedPubMedCentralGoogle Scholar
  134. Yelton MM, Hamer JE, Timberlake WE (1984) Transformation of Aspergillus nidulans by using a trpC plasmid. Proc Natl Acad Sci U S A 81:1470–1474PubMedPubMedCentralGoogle Scholar
  135. Yoder OC, Weltring K, Turgeon BG, van Etten HD (1986) Technology for molecular cloning of fungal virulence genes. In: Bailey JA (ed) Biology and molecular biology of plant-pathogen interactions. Springer, Berlin, p 371Google Scholar
  136. Zwiers LH, de Waard MA (2001) Efficient Agrobacterium tumefaciens-mediated gene disruption in the phytopathogen Mycosphaerella graminicola. Curr Genet 39:388–393PubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of Molecular Biology, Faculty of Biology and Environmental ScienceUniversity of LeónLeónSpain

Personalised recommendations