Skip to main content

Solid Rotor with Conducting Slot Wedges: Leakage Circuit Loops

  • Chapter
  • First Online:
Alternating Current Multi-Circuit Electric Machines
  • 1077 Accesses

Abstract

At the strong skin effect, leakage fields in solid rotor equipped with conducting slot wedges can be described using a “peripheral” rotor model. The “peripheral” model was used in Chaps. 17 and 19 to describe leakage fields in slotted and squirrel-cage solid rotors and also to establish the eddy current circuit loops induced in solid rotors of such construction. In this chapter, results obtained in Chaps. 17 and 19 are used to establish the eddy current circuit loops induced in a solid rotor with conducting slot wedges at the strong skin effect.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kasharsky, E., Shapiro, А.: About an impact of the teeth on parameters of the turbo-generator at the asymmetrical load. Collection of Papers “Theory, Calculation and Research of Highly Utilized Electric Machines. Nauka, Moskow/Leningrad (1965)

    Google Scholar 

  2. Bratolijc, T.: A contribution to the theory of the asynchronous turbo-generator with the solid rotor and series excitation. Ph.D. thesis, Techn.University, Zurich/Bamberg (1968)

    Google Scholar 

  3. Asanbayev, V.: Equivalent circuits, parameters and characteristics of large electric machines with the solid rotor. Ph.D. thesis, Academy of Science of Ukranian SSR, Institute of Elektrodynamics, Kiev (1991)

    Google Scholar 

  4. Asanbayev, V.: Equations for AC Electric Machine with the Slotted Solid Rotor. Academy of Science Ukrainian SSR, Institute of Elektrodynamics, Preprint, N. 260, Kiev (1981)

    Google Scholar 

  5. Asanbayev, V., Saratov, V.: Method for Calculation of Parameters and Characteristics of Electric Machines with the Slotted Solid Rotor. Academy of Science Ukrainian SSR, Institute of Elektrodynamics, Preprint, N. 276, Kiev (1982)

    Google Scholar 

  6. Asanbayev, V.: Calculation Model of the Slotted Solid Rotor in the Form of a Layered Structure. Academy of Science Ukrainian SSR. Institute of Elektrodynamics, Preprint, N. 505, Kiev (1987)

    Google Scholar 

  7. Asanbayev, V.: Representation of Elektromagnetic Processes in the Slotted Solid Rotor with the Use of Electric Circuits. Academy of Science Ukrainian SSR, Institute of Elektrodynamics, Preprint, N. 506, Kiev (1987)

    Google Scholar 

  8. Asanbayev, V.: Equivalent Circuits and Parameters of the Slotted Solid Rotor for a Wide Range of Change of the Slip. Academy of Science Ukrainian SSR, Institute of Elektrodynamics, Preprint, N. 507, Kiev (1987)

    Google Scholar 

  9. Asanbayev, V.: Representation of the slotted solid rotor in the form of a conditional layered structure. Proc. High. Educ. Establ. Elektromech. 12, 13–17 (1988)

    Google Scholar 

  10. Asanbayev, V.: Equivalent circuit for calculation of current displacement in the slotted solid rotor. Proc. High. Educ. Establ. Elektromech. 4 26–33 (1089)

    Google Scholar 

  11. Asanbayev, V.: Determination by Equivalent Circuit of Solid Rotor Parameters in Terms of Current Displacement to the Periphery of the Tooth. Technicheskaya Electrodinamika, vol. 2. Naukova Dumka, Kiev (1991)

    Google Scholar 

  12. Asanbayev, V., Saratov, V.: Equivalent Circuits and Parameters of the Solid Rotor with the Conducting Slot Wedges. Problems of Technical Elektrodynamics, vol. 63, pp. 27–32. Naukova Dumka, Kiev (1977)

    Google Scholar 

  13. Brynskiy, Е., Danilevich, Y., Yakovlev, V.: Electromagnetic Fields in Electric Machines. Energiya, Leningrad (1979)

    Google Scholar 

  14. Turovskiy, Y.: Electromagnetic Calculations of Elements of Electric Machines (Translation from Polish). Energoatomizdat, Moskow (1986)

    Google Scholar 

  15. Asanbayev, V.: Two-loop equivalent circuit parameters of the asynchronous machine rotor slot bar. Electrichestvo 6, 27–32 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Appendix A.21 Transformations

Appendix A.21 Transformations

21.1.1 A.21.1 Factors ckz, (c2 klc kz ) and (c2 klc2 Πzc2 kz): Real and Imaginary Components

In expression (21.41), factors c kz , (c 2 kl c kz ) and (c 2 kl c 2Πz c 2 kz ) are used. These factors can be represented as the sum of the real and imaginary components. Taking into account (21.36), (21.37), (21.38) and (21.39), we have from (21.18) for factor c kz

$$ {c}_{kz}=1+\frac{Z_{\tau kl}}{Z_{\Pi z}}=1+\frac{r_{\tau kl}/s+j{x}_{\tau kl}}{r_{cz}/s+j\left({x}_{cz\sigma }+{x}_{\Pi z}\right)} $$
(A.21.1)

In (A.21.1), the following non-dimensional values can be used:

$$ {\alpha}_{kz}=\frac{r_{\tau kl}}{r_{cz}};{\beta}_{kz}=\frac{x_{cz\sigma }}{r_{cz}/s};{\gamma}_{cz}=\frac{x_{\Pi z}}{r_{cz}/s};{\upsilon}_{kz}=\frac{x_{\tau kl}}{r_{cz}/s} $$
(A.21.2)

Then, expression (A.21.1) takes the form

$$ \begin{array}{l}{c}_{kz}=1+\frac{r_{\tau kl}/s+j{x}_{\tau kl}}{r_{cz}/s+j\left({x}_{cz\sigma}+{x}_{\Pi z}\right)}=1+\frac{\alpha_{kz}+j{\upsilon}_{kz}}{1+j\left({\beta}_{kz}+{\gamma}_{kz}\right)}\hfill \\ {}\kern1.1em =1+\frac{\left[{\alpha}_{kz}+{\upsilon}_{kz}\left({\beta}_{kz}+{\gamma}_{kz}\right)\left]+j\right[{\upsilon}_{kz}-{\alpha}_{kz}\left({\beta}_{kz}+{\gamma}_{kz}\right)\right]}{1+{\left({\beta}_{kz}+{\gamma}_{kz}\right)}^2}={c}_{kkr}+j{c}_{kkx}\hfill \end{array} $$
(A.21.3)

where \( {c}_{kkr}=1+\frac{\alpha_{kz}+{\upsilon}_{kz}\left({\beta}_{kz}+{\gamma}_{kz}\right)}{1+{\left({\beta}_{kz}+{\gamma}_{kz}\right)}^2};{c}_{kkx}=\frac{\upsilon_{kz}-{\alpha}_{kz}\left({\beta}_{kz}+{\gamma}_{kz}\right)}{1+{\left({\beta}_{kz}+{\gamma}_{kz}\right)}^2} \).

Using expressions shown in (A.21.3) and (21.33), (21.34) and (21.35), we have for the product of the factors (c 2 kl c kz )

$$ \begin{array}{l}\left({c}_{kl}^2{c}_{kz}\right)=\left({k}_{kzr}+j{k}_{kzx}\right)\left({c}_{kkr}+j{c}_{kkx}\right)\hfill \\ {}\kern2.95em =\left({k}_{kzr}{c}_{kkr}-{k}_{kzx}{c}_{kkx}\right)+j\left({k}_{kzx}{c}_{kkr}+{k}_{kzr}{c}_{kkx}\right)={k}_{kkzr}+j{k}_{kkzx}\hfill \end{array} $$
(A.21.4)

where k kkzr  = k kzr c kkr  − k kzx c kkx ; k kkzx  = k kzx c kkr  + k kzr c kkx .

From (A.21.3), (21.33), (21.34), (21.35) and (17.75), it follows for the product of the factors (c 2 kl c 2Πz c 2 kz ) that

$$ \begin{array}{l}\left({c}_{kl}^2{c}_{\Pi z}^2{c}_{kz}^2\right)=\left({k}_{kzr}+j{k}_{kzx}\right)\left({k}_{\Pi zr}+j{k}_{\Pi zx}\right){\left({c}_{kkr}+j{c}_{kkx}\right)}^2\hfill \\ {}\kern4.3em =\left[\left({k}_{kzr}{k}_{\Pi zr}-{k}_{kzx}{k}_{\Pi zx}\right)+j\left({k}_{kzx}{k}_{\Pi zr}+{k}_{kzr}{k}_{\Pi zx}\right)\right]\hfill \\ {}\kern5.3em \times \left[\left({c}_{kkr}^2-{c}_{kkx}^2\right)+j2{c}_{kkr}{c}_{kkx}\right]\hfill \\ {}\kern4.3em =\left[\left({k}_{kzr}{k}_{\Pi zr}-{k}_{kzx}{k}_{\Pi zx}\right)\left({c}_{kkr}^2-{c}_{kkx}^2\right)-2{c}_{kkr}{c}_{kkx}\left({k}_{kzx}{k}_{\Pi zr}+{k}_{kzr}{k}_{\Pi zx}\right)\right]\hfill \\ {}\kern5.3em +j\left[\left({k}_{kzx}{k}_{\Pi zr}+{k}_{kzr}{k}_{\Pi zx}\right)\left({c}_{kkr}^2-{c}_{kkx}^2\right)+2{c}_{kkr}{c}_{kkx}\left({k}_{kzr}{k}_{\Pi zr}-{k}_{kzx}{k}_{\Pi zx}\right)\right]\hfill \\ {}\kern4.3em ={k}_{k\Pi r}+j{k}_{k\Pi x},\hfill \end{array} $$
(A.21.5)

where \( \begin{array}{ll}{k}_{k\Pi r}\hfill & \kern-1.em =\left({k}_{kzr}{k}_{\Pi zr}-{k}_{kzx}{k}_{\Pi zx}\right)\left({c}_{kkr}^2-{c}_{kkx}^2\right)-2{c}_{kkr}{c}_{kkx}\left({k}_{kzx}{k}_{\Pi zr}+{k}_{kzr}{k}_{\Pi zx}\right);\hfill \\ {}{k}_{k\Pi x}\hfill & \kern-1.em =\left({k}_{kzx}{k}_{\Pi zr}+{k}_{kzr}{k}_{\Pi zx}\right)\left({c}_{kkr}^2-{c}_{kkx}^2\right)+2{c}_{kkr}{c}_{kkx}\left({k}_{kzr}{k}_{\Pi zr}-{k}_{kzx}{k}_{\Pi zx}\right).\hfill \end{array} \)

21.1.2 A.21.2 Factors c kz1, (c 2 kl c kz1) and (c 2 kl c 2Πz1 c 2 kz1 ): Real and Imaginary Components

We consider factors c kz1, (c 2 kl c kz1) and (c 2 kl c 2Πz1 c 2 kz1 ) used in expression (21.77). Factor c kz1 is determined by the expression given in (21.76) and by using (21.72) it can be reduced to the form

$$ {c}_{kz1}=1+\frac{Z_{\tau kl}^{**}}{Z_{\Pi z1}^{**}}=1+\frac{Z_{\tau kl}}{Z_{\Pi z1}}=1+\frac{r_{\tau kl}/s+j{x}_{\tau kl}}{r_{cz1}/s+j\left({x}_{cz1\sigma }+{x}_{\Pi z1}\right)} $$
(A.21.6)

In (A.21.6), we use the following non-dimensional values:

$$ {\alpha}_{kz1}=\frac{r_{\tau kl}}{r_{cz1}};{\beta}_{kz1}=\frac{x_{cz1\sigma }}{r_{cz1}/s};{\gamma}_{cz1}=\frac{x_{\Pi z1}}{r_{cz1}/s};{\upsilon}_{kz1}=\frac{x_{\tau kl}}{r_{cz1}/s} $$
(A.21.7)

Then, expression (A.21.6) acquires the form

$$ \begin{array}{l}{c}_{kz1}=1+\frac{r_{\tau kl}/s+j{x}_{\tau kl}}{r_{cz1}/s+j\left({x}_{cz1\sigma }+{x}_{\varPi z1}\right)}=1+\frac{\alpha_{kz1}+j{\upsilon}_{kz1}}{1+j\left({\beta}_{kz1}+{\gamma}_{kz1}\right)}\hfill \\ {}\kern1.49em =1+\frac{\left[{\alpha}_{kz1}+{\upsilon}_{kz1}\left({\beta}_{kz1}+{\gamma}_{kz1}\right)\left]+j\right[{\upsilon}_{kz1}-{\alpha}_{kz1}\left({\beta}_{kz1}+{\gamma}_{kz1}\right)\right]}{1+{\left({\beta}_{kz1}+{\gamma}_{kz1}\right)}^2}={c}_{kk1r}+j{c}_{kk1x}\hfill \end{array} $$
(A.21.8)

where \( {c}_{kk1r}=1+\frac{\alpha_{kz1}+{\upsilon}_{kz1}\left({\beta}_{kz1}+{\gamma}_{kz1}\right)}{1+{\left({\beta}_{kz1}+{\gamma}_{kz1}\right)}^2};{c}_{kk1x}=\frac{\upsilon_{kz1}-{\alpha}_{kz1}\left({\beta}_{kz1}+{\gamma}_{kz1}\right)}{1+{\left({\beta}_{kz1}+{\gamma}_{kz1}\right)}^2} \).

From (21.33), (21.34), (21.35) and (A.21.8), the product of the factors (c 2 kl c kz1) can be expressed as

$$ \begin{array}{l}\left({c}_{kl}^2{c}_{kz1}\right)=\left({k}_{kzr}+j{k}_{kzx}\right)\left({c}_{kk1r}+j{c}_{kk1x}\right)=\left({k}_{kzr}{c}_{kk1r}-{k}_{kzx}{c}_{kk1x}\right)\hfill \\ {}\kern4.5em +j\left({k}_{kzx}{c}_{kk1r}+{k}_{kzr}{c}_{kk1x}\right)={c}_{k\Pi zr}+j{c}_{k\Pi zx}\hfill \end{array} $$
(A.21.9)

where c kΠzr  = k kzr c kk1r  − k kzx c kk1x ; c kΠzx  = k kzx c kk1r  + k kzr c kk1x .

Considering (21.33), (21.34), (21.35), (17.113) and (A.21.8), we have for the product of the factors (c 2 kl c 2 Πz1 c 2 kz1 )

$$ \begin{array}{l}\left({c}_{kl}^2{c}_{\Pi z1}^2{c}_{kz1}^2\right)=\left({k}_{kz r}+j{k}_{kz x}\right)\left({k}_{\Pi z1r}+j{k}_{\Pi z1x}\right){\left({c}_{kk1r}+j{c}_{kk1x}\right)}^2\hfill \\ {}\kern4.99em =\left[{k}_{\Pi z1r}{k}_{kz r}-{k}_{\Pi z1x}{k}_{kz x}+j\left({k}_{\Pi z1x}{k}_{kz r}+{k}_{\Pi z1r}{k}_{kz x}\right)\right]\left[\left({c}_{kk1r}^2-{c}_{kk1x}^2\right)+j2{c}_{kk1r}{c}_{kk1x}\right]\hfill \\ {}\kern4.99em =\left[\left({k}_{\Pi z1r}{k}_{kz r}-{k}_{\Pi z1x}{k}_{kz x}\right)\left({c}_{kk1r}^2-{c}_{kk1x}^2\right)-2\left({k}_{\Pi z1x}{k}_{kz r}+{k}_{\Pi z1r}{k}_{kz x}\right){c}_{kk1r}{c}_{kk1x}\right]\hfill \\ {}\kern5.99em +j\left[\left({k}_{\Pi z1x}{k}_{kz r}+{k}_{\Pi z1r}{k}_{kz x}\right)\left({c}_{kk1r}^2-{c}_{kk1x}^2\right)+2\left({k}_{\Pi z1r}{k}_{kz r}-{k}_{\Pi z1x}{k}_{kz x}\right){c}_{kk1r}{c}_{kk1x}\right]\hfill \\ {}\kern4.99em ={k}_{k\Pi zr}+j{k}_{k\Pi zx}\hfill \end{array} $$
(A.21.10)

where \( \begin{array}{l}{k}_{k\Pi zr}=\left({k}_{\Pi z1r}{k}_{kzr}-{k}_{\Pi z1x}{k}_{kzx}\right)\left({c}_{kk1r}^2-{c}_{kk1x}^2\right)-2\left({k}_{\Pi z1x}{k}_{kzr}+{k}_{\Pi z1r}{k}_{kzx}\right){c}_{kk1r}{c}_{kk1x};\hfill \\ {}{k}_{k\Pi zx}=\left({k}_{\Pi z1x}{k}_{kzr}+{k}_{\Pi z1r}{k}_{kzx}\right)\left({c}_{kk1r}^2-{c}_{kk1x}^2\right)+2\left({k}_{\Pi z1r}{k}_{kzr}-{k}_{\Pi z1x}{k}_{kzx}\right){c}_{kk1r}{c}_{kk1x}.\hfill \end{array} \)

21.1.3 A.21.3 Expression [Zkl2(Zτkl2 + ZΠz)c2 kl2]/[Zkl2 + (Zτkl2 + ZΠz)c2 kl2] and Impedance Zkl2: Real and Imaginary Components

The expression for the impedance Z kl2 was presented in (21.98). In (21.98), we use the following non-dimensional values:

$$ {\alpha}_{kl2}=\frac{r_{cck2}}{r_{ckl2}}\kern0.5em \mathrm{and}\kern0.5em {\gamma}_{kl2}=\frac{x_{cck2\sigma }}{r_{ckl2}/s} $$
(A.21.11)

Then, expression (21.98) obtains the form

$$ \begin{array}{l}{Z}_{kl2}=\frac{1}{\frac{1}{r_{cck2}/s+j{x}_{cck2\sigma }}+\frac{1}{r_{ckl2}/s}}+\frac{r_{\Pi k2}}{s}+j{x}_{\Pi k2}=\frac{r_{ckl2}}{s}\kern.18em \frac{\alpha_{kl2}+j{\gamma}_{kl2}}{\left(1+{\alpha}_{kl2}\right)+j{\gamma}_{kl2}}\hfill \\ {}\kern2.2em +\frac{r_{\Pi k2}}{s}+j{x}_{\Pi k2}=\frac{r_{ckl2}}{s}\kern.18em \frac{\left[{\alpha}_{kl2}\left(1+{\alpha}_{kl2}\right)+{\gamma}_{kl2}^2\right]+j{\gamma}_{kl2}}{{\left(1+{\alpha}_{kl2}\right)}^2+{\gamma}_{kl2}^2}+\frac{r_{\Pi k2}}{s}+j{x}_{\Pi k2}\hfill \\ {}\kern1.2em =\frac{r_{ckl2}}{s}\left[\frac{\alpha_{kl2}\left(1+{\alpha}_{kl2}\right)+{\gamma}_{kl2}^2}{{\left(1+{\alpha}_{kl2}\right)}^2+{\gamma}_{kl2}^2}+\frac{r_{\Pi k2}}{r_{ckl2}}\right]+j\left[{x}_{\Pi k2}+{x}_{cck2\sigma}\frac{1}{{\left(1+{\alpha}_{kl2}\right)}^2+{\gamma}_{kl2}^2}\right]\hfill \\ {}\kern1.2em =\frac{r_{kl2}}{s}+j\left({x}_{\Pi k2}+{x}_{cck2\sigma }{k}_{\Pi ck}\right)=\frac{r_{kl2}}{s}+j{x}_{kl2}\hfill \end{array} $$
(A.21.12)

where \( \begin{array}{ll}\frac{r_{kl2}}{s}\hfill & \kern-1.2em =\frac{r_{ckl2}}{s}\left[\frac{\alpha_{kl2}\left(1+{\alpha}_{kl2}\right)+{\gamma}_{kl2}^2}{{\left(1+{\alpha}_{kl2}\right)}^2+{\gamma}_{kl2}^2}+\frac{r_{\varPi k2}}{r_{ckl2}}\right];{x}_{kl2}={x}_{\Pi k2}+{x}_{cck2\sigma }{k}_{\Pi ck}\hfill \\ {}{k}_{\Pi ck}\hfill & \kern-.92em ={\left[{\left(1+{\alpha}_{kl2}\right)}^2+{\gamma}_{kl2}^2\right]}^{-1}.\hfill \end{array} \)

We consider the second term of expression (21.108) determined as

$$ \frac{Z_{kl2}\left({Z}_{\tau kl2}+{Z}_{\Pi z}\right){c}_{kl2}^2}{Z_{kl2}+\left({Z}_{\tau kl2}+{Z}_{\Pi z}\right){c}_{kl2}^2} $$
(A.21.13)

This expression can be presented as the sum of the real and imaginary components. In (A.21.13), we first consider the value of (Z τkl2 + Z Πz )c 2 kl2 . Using expressions given in (17.70) and (21.97), the value of (Z τkl2 + Z Πz )c 2 kl2 can be obtained as

$$ \begin{array}{l}\left({Z}_{\tau kl2}+{Z}_{\Pi z}\right){c}_{kl2}^2=\left[{r}_{\tau kl2}/s+j{x}_{\tau kl2}+{r}_z/s+j\left({x}_{cz\sigma}+{x}_{\Pi z}\right)\right]\left({k}_{kz2r}+j{k}_{kz2x}\right)\hfill \\ {}=\left[\left({r}_z/s\right){k}_{kz2r}-\left({x}_{cz\sigma}+{x}_{\Pi z}\right){k}_{kz2x}+\left({r}_{\tau kl2}/s\right){k}_{kz2r}-{x}_{\tau kl2}{k}_{kz2x}\right]\hfill \\ {}\kern.59em +j\left[\left({x}_{cz\sigma}+{x}_{\Pi z}\right){k}_{kz2r}+\left({r}_z/s\right){k}_{kz2x}+{x}_{\tau kl2}{k}_{kz2r}+\left({r}_{\tau kl2}/s\right){k}_{kz2x}\right]\hfill \\ {}=\left[\frac{r_z}{s}\left(1+\frac{r_{\tau kl2}}{r_z}\right){k}_{kz2r}-{x}_{cz\sigma}\left(1+\frac{x_{\Pi z}}{x_{cz\sigma}}+\frac{x_{\tau kl2}}{x_{cz\sigma}}\right){k}_{kz2x}\right]\hfill \\ {}\kern.59em +j\left[{x}_{cz\sigma}\left({k}_{kz2r}+\frac{r_z/s}{x_{cz\sigma}}{k}_{kz2x}\right)+{x}_{\Pi z}{k}_{kz2r}+{x}_{\tau kl2}\left({k}_{kz2r}+\frac{r_{\tau kl2}/s}{x_{\tau kl2}}{k}_{kz2x}\right)\right]\hfill \\ {}=\frac{r_z}{s}\left[\left(1+\frac{r_{\tau kl2}}{r_z}\right){k}_{kz2r}-\frac{x_{cz\sigma}}{r_z/s}\left(1+\frac{x_{\Pi z}}{x_{cz\sigma}}+\frac{x_{\tau kl2}}{x_{cz\sigma}}\right){k}_{kz2x}\right]\hfill \\ {}\kern.59em +j\left({x}_{cz\sigma}{k}_{cxk2}+{x}_{\Pi z}{k}_{kz2r}+{x}_{\tau kl2}{k}_{\tau cxk}\right)=\frac{r_{kz}}{s}+j\left({x}_{cz\sigma}^{\prime }+{x}_{\Pi z}^{\prime }+{x}_{\tau kl2}^{\prime}\right)=\frac{r_{kz}}{s}+j{x}_{kz}\hfill \end{array} $$
(A.21.14)

where \( \begin{array}{l}\hfill \frac{r_{kz}}{s}=\frac{r_z}{s}\left[\left(1+\frac{r_{\tau kl2}}{r_z}\right){k}_{kz2r}-\frac{x_{cz\sigma }}{r_z/s}\left(1+\frac{x_{\Pi z}}{x_{cz\sigma }}+\frac{x_{\tau kl2}}{x_{cz\sigma }}\right){k}_{kz2x}\right]\hfill \\ {}\hfill {x}_{kz}={x}_{cz\sigma}^{\prime }+{x}_{\Pi z}^{\prime }+{x}_{\tau kl2}^{\prime };{x}_{cz\sigma}^{\prime }={x}_{cz\sigma }{k}_{cxk2};{x}_{\Pi z}^{\prime }={x}_{\Pi z}{k}_{kz2r};{x}_{\tau kl2}^{\prime }={x}_{\tau kl2}{k}_{\tau cxk}\hfill \\ {}\hfill \kern-.8em {k}_{cxk2}={k}_{kz2r}+\frac{r_z/s}{x_{cz\sigma }}{k}_{kz2x};{k}_{\tau cxk}={k}_{kz2r}+\frac{r_{\tau kl2}/s}{x_{\tau kl2}}{k}_{kz2x}\hfill \end{array} \)

Considering that Z kl2 = r kl2/s + jx kl2 and (Z τkl2 + Z Πz )c 2 kl2  = r kz /s + jx kz , we can use in (A.21.13) the following non-dimensional values:

$$ {\alpha}_{kl2}=\frac{r_{kz}}{r_{kl2}};{\beta}_{kl2}=\frac{x_{kl2}}{r_{kl2}/s};{\gamma}_{kl2}=\frac{x_{kz}}{r_{kl2}/s} $$
(A.21.15)

Then, it follows

$$ \begin{array}{l}\frac{Z_{kl2}\left({Z}_{\tau kl2}+{Z}_{\Pi z}\right){c}_{kl2}^2}{Z_{kl2}+\left({Z}_{\tau kl2}+{Z}_{\Pi z}\right){c}_{kl2}^2}=\frac{\left({r}_{kl2}/s+j{x}_{kl2}\right)\left({r}_{kz}/s+j{x}_{kz}\right)}{\left({r}_{kl2}/s+{r}_{kz}/s\right)+j\left({x}_{kl2}+j{x}_{kz}\right)}\hfill \\ {}\kern9.49em =\frac{r_{kl2}}{s}\kern.18em \frac{\left(1+j{\beta}_{kl2}\right)\left({\alpha}_{kl2}+j{\gamma}_{kl2}\right)}{\left(1+{\alpha}_{kl2}\right)+j\left({\beta}_{kl2}+{\gamma}_{kl2}\right)}\hfill \\ {}\kern9.49em =\frac{r_{kl2}}{s}\kern.18em \frac{\alpha_{kl2}\left(1+{\beta}_{kl2}^2\right)+{\alpha}_{kl2}^2+{\gamma}_{kl2}^2}{{\left(1+{\alpha}_{kl2}\right)}^2+{\left({\beta}_{kl2}+{\gamma}_{kl2}\right)}^2}\hfill \\ {}\kern10.49em +j{x}_{kl2\sigma}\frac{\left({\gamma}_{kl2}/{\beta}_{kl2}\right)\left(1+{\beta}_{kl2}^2\right)+{\alpha}_{kl2}^2+{\gamma}_{kl2}^2}{{\left(1+{\alpha}_{kl2}\right)}^2+{\left({\beta}_{kl2}+{\gamma}_{kl2}\right)}^2}\hfill \\ {}\kern9.49em =\frac{r_{kl2}}{s}{k}_{kl2r}^{{\prime\prime} }+j{x}_{kl2}{k}_{kl2x}^{{\prime\prime}}\hfill \end{array} $$
(A.21.16)

where \( {k}_{kl2r}^{{\prime\prime} }=\frac{\alpha_{kl2}\left(1+{\beta}_{kl2}^2\right)+{\alpha}_{kl2}^2+{\gamma}_{kl2}^2}{{\left(1+{\alpha}_{kl2}\right)}^2+{\left({\beta}_{kl2}+{\gamma}_{kl2}\right)}^2};{k}_{kl2x}^{{\prime\prime} }=\frac{\left({\gamma}_{kl2}/{\beta}_{kl2}\right)\left(1+{\beta}_{kl2}^2\right)+{\alpha}_{kl2}^2+{\gamma}_{kl2}^2}{{\left(1+{\alpha}_{kl2}\right)}^2+{\left({\beta}_{kl2}+{\gamma}_{kl2}\right)}^2} \).

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Asanbayev, V. (2015). Solid Rotor with Conducting Slot Wedges: Leakage Circuit Loops. In: Alternating Current Multi-Circuit Electric Machines. Springer, Cham. https://doi.org/10.1007/978-3-319-10109-5_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-10109-5_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-10108-8

  • Online ISBN: 978-3-319-10109-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics