Skip to main content

Gentzen’s Original Consistency Proof and the Bar Theorem

  • Chapter
Gentzen's Centenary

Abstract

The story of Gentzen’s original consistency proof for first-order number theory [9], as told by Paul Bernays [1, 9], [11, Letter 69, pp. 76–79], is now familiar: Gentzen sent it off to Mathematische Annalen in August of 1935 and then withdrew it in December after receiving criticism and, in particular, the criticism that the proof used the Fan Theorem, a criticism that, as the references just cited seem to indicate, Bernays endorsed or initiated at the time but later rejected. That particular criticism is transparently false, but the argument of the paper remains nevertheless invalid from a constructive standpoint. In a letter to Bernays dated November 4, 1935, Gentzen protested this evaluation; but then, in another letter to him dated December 11, 1935, he admits that the ‘critical inference in my consistency proof is defective’.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The paper first appeared in print via an appendix to the translation of [5] in [8]. A somewhat revised version of it is presented in [1] and the full text, together with an introduction by Bernays, in [9].

  2. 2.

    Could Bernays’ references to the “Fan Theorem,” all over 30 years later, have been the result of a confusion of the Fan Theorem with the Bar Theorem?

  3. 3.

    See [2] for a detailed description of the relation between Gentzen’s 1938 consistency proof and Schütte’s 1951 result.

  4. 4.

    The rule is, in itself, just a rule for constructing a certain tree—I call it a “pre-reduction rule” below. It is a reduction rule in virtue of the tree being well-founded. So, to know that A is true would mean, not simply to possess the rule, but also to know that the tree is well-founded. One might have some difficulty in labelling knowledge of this kind as “finitary.”

  5. 5.

    That Gödel had anticipated the no-counterexample interpretation in these notes was first noticed by C. Parsons and W. Sieg in their introductory note.

  6. 6.

    When in [7] he comes to the problem of determining the bound on the provable ordinals, he needs to essentially redo the argument for the case that the atomic formulas also include t ∈ V, where V stands for an indeterminate set of numbers and t a numerical term. But it is obvious how to treat this extension. The atomic sentences must be extended to include the expressions n ∈ V and the axiom sets, defined below, has to be extended to include sequents of the form \(\Gamma,n \in V \vdash n \in V\).

  7. 7.

    It is not excluded that some premise of an inference is identical with the conclusion. Therefore, we have to distinguish the node of a deduction tree from the sequent attached to it. For simplicity, I have defined the nodes of deduction trees to be in general infinitary objects. The finitist will want to replace these with suitable codes.

References

  1. P. Bernays, On the original Gentzen consistency proof for number theory, Intuitionism and Proof Theory, ed. by A. Kino, J. Myhill, R. Vesley (North-Holland, Amsterdam, 1970), pp. 409–418

    Google Scholar 

  2. W. Buchholz, Explaining Gentzen’s consistency proof within infinitary proof theory, in Computational Logic and Proof Theory. Fifth Kurt Gödel Colloquium, KGC ’97, ed. by G. Gottlob, A. Leitsch, D. Mundici. Lecture Notes in Computer Science, vol. 1298 Springer, Berlin (1997)

    Google Scholar 

  3. T. Coquand, A semantics of evidence for classical arithmetic. J. Symb. Log. 60, 325–337 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  4. G. Gentzen, Untersuchungen über das logische Schliessen I, II. Math. Z. 39, 176–210, 405–431 (1935). English translation in [8, pp. 68–131]

    Google Scholar 

  5. G. Gentzen, Die Widerspruchfreiheit der reinen Zahlentheorie. Math. Ann. 112, 493–565 (1936) English translation in [8, pp. 132–213]

    Google Scholar 

  6. G. Gentzen, Nue Fassung des Widerspruchsfreiheitsbeweises für die reine Zahlentheorie, in Forschungen zur Logik und der Grundlagen der exakten Wissenschaften, New Series, No. 4 (1938), pp. 5–18. English translation in [8, pp. 252–286]

    Google Scholar 

  7. G. Gentzen, Beweisbarkeit und Unbeweisbarkeit von Anfangsfällen der transfiniten Induktion in der reinen Zahlentheorie. Math. Ann. 119, 140–161 (1943). English translation in [8, pp. 287–308].

    Google Scholar 

  8. G. Gentzen, The Collected Papers of Gerhard Gentzen (North-Holland, Amsterdam, 1969). Translated and edited by M. E. Szabo

    Google Scholar 

  9. G. Gentzen, Der erste Widerspruchsfreiheitsbeweis für die klassische Zahlentheorie. Archiv für Mathematische Logik und Grundlagenforschung 16, 97–118 (1974). Edited with a brief introduction by P. Bernays

    Google Scholar 

  10. K. Gödel, Lecture at Zilsel’s, in Collected Works, vol. III (Oxford University Press, Oxford, 1938), pp. 87–113.

    Google Scholar 

  11. K. Gödel, Collected Works, vol. IV (Oxford University Press, Oxford, 2003)

    Google Scholar 

  12. G. Kreisel, On the interpretation of non-finitist proofs—part i. J. Symb. Log. 16, 241–267 (1951)

    MATH  MathSciNet  Google Scholar 

  13. G. Kreisel, On the interpretation of non-finitist proofs—part ii. interpretations of number theory, applications. J. Symb. Log. 17, 43–58 (1952)

    Google Scholar 

  14. P. Lorenzen, Algebraische und logistische Untersuchungen über freie Verbände. J. Symb. Log. 16, 81–106 (1951)

    Article  MATH  MathSciNet  Google Scholar 

  15. K. Schütte, Beweisetheoretische Erfassung der unendlichen Induktion in der Zahlentheorie. Math. Ann. 122, 369–389 (1951)

    Article  MATH  MathSciNet  Google Scholar 

  16. K. Schütte, Beweistheoretische Untersuchung der verzweigten Analysis. Math. Ann. 124, 123–147 (1952)

    Article  MATH  MathSciNet  Google Scholar 

  17. K. Schütte, Eine Grenze für die Beweisbarkeit der transfinitien Induction in der verzweigten Typenlogik. Archiv für mathematische Logik und Grundlagenforschung 7, 45–60 (1964)

    Article  Google Scholar 

  18. W. Tait, Normal derivability in classical logic, in The Syntax and Semantics of Infinitary Languages, ed. by J. Barwise (Springer, Berlin, 1968), pp. 204–236

    Chapter  Google Scholar 

  19. W. Tait, Gödel’s unpublished papers on foundations of mathematics. Philos. Math. 9, 87–126 (2001). Reprinted in [21], pp. 276–313

    Google Scholar 

  20. W. Tait, Gödel’s reformulation of Gentzen’s first consistency proof for arithmetic. Bull. Symb. Log. 11(2), 225–238 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  21. W. Tait, The Provenance of Pure Reason: Essays in the Philosophy of Mathematics and Its History (Oxford University Press, Oxford, 2005)

    Google Scholar 

Download references

Acknowledgements

My understanding of the philosophical background of Gentzen’s work on consistency was enhanced by reading the unpublished manuscript “On the Intuitionistic Background of Gentzen’s 1936 Consistency Proof and Its Philosophical Aspects” by Yuta Takahashi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. W. Tait .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Tait, W.W. (2015). Gentzen’s Original Consistency Proof and the Bar Theorem. In: Kahle, R., Rathjen, M. (eds) Gentzen's Centenary. Springer, Cham. https://doi.org/10.1007/978-3-319-10103-3_8

Download citation

Publish with us

Policies and ethics