Skip to main content

Simulation Study on Single-Layer Bulk-Heterojunction Solar Cells

  • Chapter
  • First Online:
  • 3465 Accesses

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 208))

Abstract

This chapter contains a detailed simulation study on a single-layer bulk heterojunction sandwiched between two metal contacts. We apply the simulation approach discussed in the previous chapter and compare the results to the predictions of approximated analytical solutions introduced in Chap. 3. In particular we investigate the interplay between mobilities and different recombination mechanisms and their effect on the fill factor and the open-circuit voltage. In the calculations we combine various properties of the bulk heterojunction with characteristics of the contacts. We point out the role of injection barriers, built-in potential, bending of energy levels, and contact selectivity. The quest for an optimum mobility will be discussed as well. In the final part of the chapter we analyze the photocurrent (dark current subtracted from current under illumination) as a function of voltage to identify processes that limit the photocurrent. In particular, we want to clarify the following points: (a) Is there an optimum mobility for charge carriers in the active layers of an organic solar cell? (b) What order of magnitude for the mobility is required for a high-performance solar cell? (c) Does the mobility influence the open-circuit voltage? (d) What does selectivity of the contacts mean and why is it important? (e) What is the role of injection barriers at the electrodes? (f) Which processes reduce the open-circuit voltage and which do not? (g) What governs the temperature dependence of the open-circuit voltage? (h) What can be learned from the intensity dependence of the photocurrent-voltage relation? (i) What is the meaning of a point of intersection between the J-V curves in dark and under illumination? (j) What does the fill factor as a function of device thickness tell?

The content of Sects. 5.2 and 5.3 is published in [1].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Tress, W., Leo, K., Riede, M.: Optimum mobility, contact properties, and open-circuit voltage of organic solar cells: a drift-diffusion simulation study. Phys. Rev. B 85, 155201 (2012)

    Google Scholar 

  2. Wagenpfahl, A., Rauh, D., Binder, M., Deibel, C., Dyakonov, V.: S-shaped current-voltage characteristics of organic solar devices. Phys. Rev. B 82, 115306 (2010)

    Article  Google Scholar 

  3. Tang, Z., Tress, W., Bao, Q., Inganäs, O.: Universal effects of PFPA1 interlayer modification on performance of reversed organic solar cells. In preparation

    Google Scholar 

  4. Kirchartz, T., Pieters, B., Taretto, K., Rau, U.: Mobility dependent efficiencies of organic bulk heterojunction solar cells: surface recombination and charge transfer state distribution. Phys. Rev. B 80, 035334 (2009)

    Article  Google Scholar 

  5. Deibel, C., Wagenpfahl, A., Dyakonov, V.: Influence of charge carrier mobility on the performance of organic solar cells. Phys. Status Solidi RRL 2, 175–177 (2008)

    Google Scholar 

  6. Mandoc, M.M., Koster, L.J.A., Blom, P.W.M.: Optimum charge carrier mobility in organic solar cells. Appl. Phys. Lett. 90, 133504 (2007)

    Article  Google Scholar 

  7. Wang, Y.-X., Tseng, S.-R., Meng, H.-F., Lee, K.-C., Liu, C.-H., Horng, S.-F.: Dark carrier recombination in organic solar cell. Appl. Phys. Lett. 93, 133501 (2008)

    Article  Google Scholar 

  8. Shieh, J.-T., Liu, C.-H., Meng, H.-F., Tseng, S.-R., Chao, Y.-C., Horng, S.-F.: The effect of carrier mobility in organic solar cells. J. Appl. Phys. 107, 084503 (2010)

    Article  Google Scholar 

  9. Koster, L.J.A., Mihailetchi, V.D., Blom, P.W.M.: Bimolecular recombination in polymer/fullerene bulk heterojunction solar cells. Appl. Phys. Lett. 88, 052104 (2006)

    Article  Google Scholar 

  10. Kotlarski, J.D., Moet, D.J.D., Blom, P.W.M.: Role of balanced charge carrier transport in low band gap polymer: fullerene bulk heterojunction solar cells. J. Polym. Sci. Part B: Polym. Phys. 49, 708–711 (2011)

    Article  Google Scholar 

  11. Mihailetchi, V.D., Wildeman, J., Blom, P.W.M.: Space-charge limited photocurrent. Phys. Rev. Lett. 94, 126602 (2005)

    Article  Google Scholar 

  12. Widmer, J., Tietze, M., Leo, K., Riede, M.: Open-circuit voltage and effective gap of organic solar cells. Adv. Funct. Mater. 23(46), 5814–5821 (2013)

    Google Scholar 

  13. Vandewal, K., Tvingstedt, K., Gadisa, A., Inganäs, O., Manca, J.V.: Relating the open-circuit voltage to interface molecular properties of donor: acceptor bulk heterojunction solar cells. Phys. Rev. B 81, 125204 (2010)

    Article  Google Scholar 

  14. Sokel, R., Hughes, R.C.: Numerical analysis of transient photoconductivity in insulators. J. Appl. Phys. 53, 7414–7424 (1982)

    Article  Google Scholar 

  15. Mihailetchi, V.D., Koster, L.J.A., Hummelen, J.C., Blom, P.W.M.: Photocurrent generation in polymer-fullerene bulk heterojunctions. Phys. Rev. Lett. 93, 216601 (2004)

    Article  Google Scholar 

  16. Limpinsel, M., Wagenpfahl, A., Mingebach, M., Deibel, C.: Photocurrent in bulk heterojunction solar cells. Phys. Rev. B 81, 085203 (2010)

    Article  Google Scholar 

  17. Maennig, B., Drechsel, J., Gebeyehu, D., Simon, P., Kozlowski, F., Werner, A., Li, F., Grundmann, S., Sonntag, S., Koch, M., Leo, K., Pfeiffer, M., Hoppe, H., Meissner, D., Sariciftci, N.S., Riedel, I., Dyakonov, V., Parisi, J.: Organic p-i-n solar cells. Appl. Phys. A 79, 1–14 (2004)

    Article  Google Scholar 

  18. Mihailetchi, V.D., Blom, P.W.M., Hummelen, J.C., Rispens, M.T.: Cathode dependence of the open-circuit voltage of polymer: fullerene bulk heterojunction solar cells. J. Appl. Phys. 94, 6849–6854 (2003)

    Article  Google Scholar 

  19. Ooi, Z.E., Jin, R., Huang, J., Loo, Y.F., Sellinger, A., DeMello, J.C.: On the pseudo-symmetric current-voltage response of bulk heterojunction solar cells. J. Mater. Chem. 18, 1644–1651 (2008)

    Article  Google Scholar 

  20. Tress, W.: Device physics of organic solar cells. Dissertation, TU Dresden (2011)

    Google Scholar 

  21. Petersen, A., Kirchartz, T., Wagner, T.: Charge extraction and photocurrent in organic bulk heterojunction solar cells. Phys. Rev. B 85, 045208 (2012)

    Google Scholar 

  22. Wehenkel, D., Koster, L., Wienk, M., Janssen, R.: Influence of injected charge carriers on photocurrents in polymer solar cells. Phys. Rev. B 85, 1–12 (2012)

    Google Scholar 

  23. Deibel, C., Wagenpfahl, A.: Comment on “Interface state recombination in organic solar cells”. Phys. Rev. B 82, 207301 (2010)

    Article  Google Scholar 

  24. Dibb, G.F.A., Kirchartz, T., Credgington, D., Durrant, J.R., Nelson, J.: Analysis of the relationship between linearity of corrected photocurrent and the order of recombination in organic solar cells. J. Phys. Chem. Lett. 2, 2407–2411 (2011)

    Google Scholar 

  25. Kirchartz, T., Agostinelli, T., Campoy-Quiles, M., Gong, W., Nelson, J.: Understanding the thickness-dependent performance of organic bulk heterojunction solar cells: the influence of mobility, lifetime, and space charge. J. Phys. Chem. Lett. 3, 3470–3475 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Tress .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Tress, W. (2014). Simulation Study on Single-Layer Bulk-Heterojunction Solar Cells. In: Organic Solar Cells. Springer Series in Materials Science, vol 208. Springer, Cham. https://doi.org/10.1007/978-3-319-10097-5_5

Download citation

Publish with us

Policies and ethics