Skip to main content

Organic Solar Cells

  • Chapter
  • First Online:
Book cover Organic Solar Cells

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 208))

Abstract

This chapter starts with a description of the characteristic electronic structure and charge transport properties of organic semiconductors. These introductory parts are followed by detailed elaborations on the working principles of organic solar cells based on the considerations of Chap. 2. The discussions focus on processes which limit the quantum efficiency and the maximum extractable energy. Beginning with a description of the general steps involved in energy conversion, the chapter shifts focus towards real structures and materials. It concludes with more experimental aspects concerning fabrication and characterization. Whereas the first sections review very basic chemistry knowledge, the solar-cell section gives a detailed evaluation of currently used models and ideas to explain the current-voltage characteristics of organic solar cells. Some basic questions addressed are: (a) What are the major prerequisites for organic materials to show semiconducting properties? (b) What happens when molecules form a solid? What are the main differences between organic and crystalline inorganic semiconductors? (c) What is the role of the reorganization energy considering optical and electrical properties of organic semiconductors? (d) What approaches exist to describe the charge-carrier mobility in organic solids? (e) What are the steps of energy conversion in an excitonic solar cell? What is the role of the bulk heterojunction? (f) How can different recombination mechanisms be distinguished experimentally? (g) What is (the role of) the charge-transfer state? (h) Can the open-circuit voltage be related to other optical and electrical quantities accessible by experiment? (i) Does a stricter limit exist for the maximum power-conversion efficiency of organic solar cells compared to their inorganic counterparts? (j) Why does a single-layer organic solar cell show diode behavior? (k) What determines the fill factor? (l) What is the role of metal electrodes? What kind of energetic situations are possible when a metal-organic contact is formed? (m) What are common solar-cell stacks? How can they be fabricated? (n) What are the remaining challenges for making organic solar cells competitive?

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sidgwick, N.V., Powell, H.M.: Bakerian lecture. Stereochemical types and valency groups. Proc. R. Soc. Lond. A 176, 153 (1940)

    Google Scholar 

  2. Atkins, P., de Paula, J.: Atkins’ Physical Chemistry. Oxford University Press, Oxford (2009)

    Google Scholar 

  3. Hückel, E.: Quantentheoretische Beiträge zum Benzolproblem. Zeitschrift für Physik 70, 204–286 (1931)

    Google Scholar 

  4. Rocke, A.: Hypothesis and experiment in the early development of Kekulé’s benzene theory. Ann Sci 42, 355–381 (1985)

    Google Scholar 

  5. Tamagawa, K., Iijima, T., Kimura, M.: Molecular structure of benzene. J. Mol. Struct. 30, 243–253 (1976)

    Google Scholar 

  6. Allen, F.H., Kennard, O., Watson, D.G., Brammer, L., Orpen, A.G., Taylor, R.: Tables of bond lengths determined by X-ray and neutron diffraction. Part 1. Bond lengths in organic compounds. J. Chem. Soc. Perkin Trans. II, 1–19 (1987)

    Google Scholar 

  7. Schwoerer, M., Wolf, H.C.: Organic Molecular Solids. Wiley-VCH, New York (2006)

    Google Scholar 

  8. Biermann, D., Schmidt, W.: Diels-Alder reactivity of polycyclic aromatic hydrocarbons. 1. Acenes and benzologs. J. Am. Chem. Soc. 102, 3163–3173 (1980)

    Google Scholar 

  9. Chen, E.S., Chen, E.C.M., Sane, N., Talley, L., Kozanecki, N., Shulze, S.: Classification of organic molecules to obtain electron affinities from half wave reduction potentials : the aromatic hydrocarbons. Classification of organic molecules to obtain electron affinities from half wave reduction potentials : the aromatic hydrocar, 9319 (1999)

    Google Scholar 

  10. Kuhn, H.: A quantum-mechanical theory of light absorption of organic dyes and similar compounds. J. Chem. Phys. 17, 1198–1212 (1949)

    Google Scholar 

  11. Albrigh, T.A., Burdett, J.K., Whangbo, M.-H.: Orbital Interactions in Chemistry. Wiley, New York (1976)

    Google Scholar 

  12. Suzuki, H.: Electronic Absorption Spectra and Geometry of Organic Molecules. Academic Press, New York (1967)

    Google Scholar 

  13. Bulović, V., Baldo, M.A., Forrest, S.R.: Excitons and energy transfer in molecular materials. In: Farchioni, R., Gross, G. (eds.) Organic Electronic Materials, pp. 391–404. Springer, Berlin (2001)

    Google Scholar 

  14. Nijegorodov, N., Luhanga, P.V.C., Nkoma, J.S., Winkoun, D.P.: The influence of planarity, rigidity and internal heavy atom upon fluorescence parameters and the intersystem crossing rate constant in molecules with the biphenyl basis. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 64, 1–5 (2006)

    Google Scholar 

  15. Kasha, M.: Characterization of electronic transitions in complex molecules. Discuss. Faraday Soc. 9, 14–19 (1950)

    Google Scholar 

  16. Koopmans, T.: Über die Zuordnung von Wellenfunktionen und Eigenwerten zu den Einzelnen Elektronen Eines Atoms. Physica 1, 104–113 (1934)

    Google Scholar 

  17. Michl, J., Thulstrup, E.W.: Why is azulene blue and anthracene white? A simple MO picture. Tetrahedron 587, 205–209 (1976)

    Google Scholar 

  18. Rohde, Dirk: Dunsch, Lothar, Tabet, Ahacine, Hartmann, Horst: and Fabian, Jürgen: Radical ions of alpha, alpha’-bis(diphenylamino)-capped oligothiophenes: a combined spectroelectrochemical and theoretical study. J. Phys. Chem. B 110, 8223–8231 (2006)

    Google Scholar 

  19. Irimia-Vladu, M., Głowacki, E.D., Troshin, P.a., Schwabegger, G., Leonat, L., Susarova, D.K., Krystal, O., Ullah, M., Kanbur, Y., Bodea, M.a., Razumov, V.F., Sitter, H., Bauer, S., Sariciftci, N.S.: Indigo—a natural pigment for high performance ambipolar organic field effect transistors and circuits. Adv. Mater. (Deerfield Beach, Fla.), 375–380 (2011)

    Google Scholar 

  20. Dresselhaus, M.S., Dresselhaus, G., Saito, R., Jorio, A.: Exciton photophysics of carbon nanotubes. Annu. Rev. Phys. Chem. 58, 719–747 (2007)

    Google Scholar 

  21. Fröhlich, H.: Electrons in lattice fields. Adv. Phys. 3, 325–361 (1954)

    Google Scholar 

  22. Holstein, T.: Studies of polaron motion. Ann. Phys. 8, 325–389 (1959)

    Google Scholar 

  23. Cravino, A.: Origin of the open circuit voltage of donor-acceptor solar cells: do polaronic energy levels play a role? Appl. Phys. Lett. 91, 243502 (2007)

    Google Scholar 

  24. Furukawa, Y.: Do bipolarons exist in doped or photoirradiated conjugated polymers? An analysis based on studies of model compounds. In: Sariciftci, N.S. (ed.) Primary Photoexcitations in Conjugated Polymers: Molecular Exciton Versus Semiconductor, vol. Model, pp. 496–522. World Scientific, Singapore (1997)

    Google Scholar 

  25. Halasinski, T.M., Hudgins, D.M., Salama, F., Allamandola, L.J., Bally, T.: Electronic absorption spectra of neutral pentacene (C22H14) and its positive and negative ions in Ne, Ar, and Kr matrices. J. Phys. Chem. A 104, 7484–7491 (2000)

    Google Scholar 

  26. Schueppel, R., Schmidt, K., Uhrich, C., Schulze, K., Wynands, D., Brédas, J., Brier, E., Reinold, E., Bu, H.-B., Baeuerle, P., Maennig, B., Pfeiffer, M., Leo, K.: Optimizing organic photovoltaics using tailored heterojunctions: a photoinduced absorption study of oligothiophenes with low band gaps. Phys. Rev. B 77, 085311 (2008)

    Google Scholar 

  27. Sze, S.M.: Physics of Semiconductor Devices, 2nd edn. Wiley, New York (1981)

    Google Scholar 

  28. Lunt, R.R., Giebink, N.C., Belak, A.A., Benziger, J.B., Forrest, S.R.: Exciton diffusion lengths of organic semiconductor thin films measured by spectrally resolved photoluminescence quenching. J. Appl. Phys. 105, 053711 (2009)

    Google Scholar 

  29. Meiss, J., Hermenau, M., Tress, W., Schuenemann, C., Selzer, F., Hummert, M., Alex, J., Lackner, G., Leo, K., Riede, M.: Tetrapropyl-tetraphenyl-diindenoperylene derivative as a green absorber for high-voltage stable organic solar cells. Phys. Rev. B 83, 165305 (2011)

    Google Scholar 

  30. May, V., Kühn, O.: Electron transfer. In: Charge and Energy Transfer Dynamics in Molecular Systems, 3rd edn. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany (2011)

    Google Scholar 

  31. Marcus, R.A.: On the theory of oxidation-reduction reactions involving electron transfer. I. J. Chem. Phys. 24, 966–978 (1956)

    Google Scholar 

  32. Miller, J.R., Calcaterra, L.T., Closs, G.L.: Intramolecular long-distance electron transfer in radical anions. The effects of free energy and solvent on the reaction rates. J. Am. Chem. Soc. 106, 3047–3049 (1984)

    Google Scholar 

  33. Bässler, H.: Charge transport in disordered organic photoconductors a Monte Carlo simulation study. Phys. Status Solidi B 175, 15–56 (1993)

    Google Scholar 

  34. Miller, A., Abrahams, E.: Impurity conduction at low concentrations. Phys. Rev. 257 (1960)

    Google Scholar 

  35. Mott, N.F.: Conduction in glasses containing transition metal ions. J. Non-Cryst. Solids 1, 1–17 (1968)

    Google Scholar 

  36. Hapert, J.J.: Hopping conduction and chemical structure—a study on silicon suboxides. Suboxides, S. (n.d.) Hopping conduction and chemical structure—a study on silicon suboxides. Universiteit Utrecht, Diss. (2002)

    Google Scholar 

  37. Apsley, N., Hughes, H.P.: Temperature-and field-dependence of hopping conduction in disordered systems. Phil. Mag. 30, 963–972 (1974)

    Google Scholar 

  38. Baranovskii, S., Cordes, H., Hensel, F., Leising, G.: Charge-carrier transport in disordered organic solids. Phys. Rev. B 62, 7934–7938 (2000)

    Google Scholar 

  39. Monroe, Don: Hopping in exponential band tails. Phys. Rev. Lett. 54, 146–149 (1985)

    Google Scholar 

  40. Craciun, N., Wildeman, J., Blom, P.: Universal arrhenius temperature activated charge transport in diodes from disordered organic semiconductors. Phys. Rev. Lett. 100, 056601 (2008)

    Google Scholar 

  41. Li, L., Meller, G., Kosina, H.: Temperature and field-dependence of hopping conduction in organic semiconductors. Microelectron. J. 38, 47–51 (2007)

    Google Scholar 

  42. Frenkel, J.: On pre-breakdown phenomena in insulators and electronic semi-conductors. Phys. Rev. 54, 647–648 (1938)

    Google Scholar 

  43. Koster, L.J.A.: Charge carrier mobility in disordered organic blends for photovoltaics. Phy. Rev. B 81, 205318 (2010)

    Google Scholar 

  44. Pasveer, W.F., Cottaar, J., Tanase, C., Coehoorn, R., Bobbert, P.A., Blom, P.W.M., Leeuw, D.M., Michels, M.A.J.: Unified description of charge-carrier mobilities in disordered semiconducting polymers. Phys. Rev. Lett. 94, 206601 (2005)

    Google Scholar 

  45. Walker, A.B., Kambili, A., Martin, S.J.: Electrical transport modelling in organic electroluminescent devices. J. Phys.: Condens. Matter 14, 9825–9876 (2002)

    Google Scholar 

  46. Gartstein, Y.N., Conwell, E.M.: High-field hopping mobility in molecular systems with spatially correlated energetic disorder. Chem. Phys. Lett. 245, 351–358 (1995)

    Google Scholar 

  47. Bouhassoune, M., Mensfoort, S.L.M.V., Bobbert, Pa, Coehoorn, R.: Carrier-density and field-dependent charge-carrier mobility in organic semiconductors with correlated Gaussian disorder. Org. Electron. 10, 437–445 (2009)

    Google Scholar 

  48. Vissenberg, M.C.J.M.: Theory of the field-effect mobility in amorphous organic transistors. Phys. Rev. B 57, 12964–12967 (1998)

    Google Scholar 

  49. Noolandi, J.: Multiple-trapping model of anomalous transit-time dispersion in a-Se. Phys. Rev. B 16, 4466–4473 (1977)

    Google Scholar 

  50. Tang, C.W.: Two-layer organic photovoltaic cell. Appl. Phys. Lett. 48, 183–185 (1986)

    Google Scholar 

  51. Tada, A., Geng, Y., Wei, Q., Hashimoto, K., Tajima, K.: Tailoring organic heterojunction interfaces in bilayer polymer photovoltaic devices. Nat. Mater. 10, 450–455 (2011)

    Google Scholar 

  52. Peumans, P., Yakimov, A., Forrest, S.R.: Small molecular weight organic thin-film photodetectors and solar cells. J. Appl. Phys. 93, 3693–3723 (2003)

    Google Scholar 

  53. Hiramoto, M., Fujiwara, H., Yokoyama, M.: Three-layered organic solar cell with a photoactive interlayer of codeposited pigments. Appl. Phys. Lett. 58, 1062–1064 (1991)

    Google Scholar 

  54. Yu, G., Gao, J., Hummelen, J.C., Wudl, F., Heeger, A.J.: Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science 270, 1789 (1995)

    Google Scholar 

  55. Halls, J.J.M., Walsh, C.A., Greenham, N.C., Marseglia, E.A., Friend, R.H., Moratti, S.C., Holmes, A.B.: Efficient photodiodes from interpenetrating polymer networks. Nature 376, 498–500 (1995)

    Google Scholar 

  56. Sariciftci, N.S., Smilowitz, L., Heeger, A.J., Wudl, F.: Photoinduced electron transfer from a conducting polymer to buckminsterfullerene. Science 258, 1474 (1992)

    Google Scholar 

  57. Brabec, C.J., Zerza, G., Cerullo, G., De Silvestri, S.: Tracing photoinduced electron transfer process in conjugated polymer/fullerene bulk heterojunctions in real time. Chem. Phys. 340, 232–236 (2001)

    Google Scholar 

  58. Müller, J., Lupton, J., Feldmann, J., Lemmer, U., Scharber, M., Sariciftci, N.S., Brabec, C., Scherf, U.: Ultrafast dynamics of charge carrier photogeneration and geminate recombination in conjugated polymer: fullerene solar cells. Phys. Rev. B 72, 195208 (2005)

    Google Scholar 

  59. Bakulin, A.A., Martyanov, D.S., Paraschuk, D.Y., Pshenichnikov, M.S., Loosdrecht, P.H.M.: Ultrafast charge photogeneration dynamics in ground-state charge-transfer complexes based on conjugated polymers. J. Phys. Chem. B 112, 13730–13737 (2008)

    Google Scholar 

  60. Cook, S., Katoh, R., Furube, A.: Ultrafast studies of charge generation in PCBM: P3HT blend films following excitation of the fullerene PCBM. J. Phys. Chem. C 113, 2547–2552 (2009)

    Google Scholar 

  61. Clarke, T.M., Durrant, J.R.: Charge photogeneration in organic solar cells. Chem. Rev. 110, 6736–6767 (2010)

    Google Scholar 

  62. Deibel, C., Strobel, T., Dyakonov, V.: Role of the charge transfer state in organic donor-acceptor solar cells. Adv. Mater. (Deerfield Beach, Fla.) 22, 4097–4111 (2010)

    Google Scholar 

  63. Würfel, P.: Photovoltaic principles and organic solar cells. Chimia 61, 770–774 (2007)

    Google Scholar 

  64. Onsager, L.: Initial recombination of ions. Phys. Rev. 54, 554–557 (1938)

    Google Scholar 

  65. Braun, C.L.: Electric field assisted dissociation of charge transfer states as a mechanism of photocarrier production. J. Chem. Phys. 80, 4157–4161 (1984)

    Google Scholar 

  66. Mihailetchi, V.D., Koster, L.J.A., Hummelen, J.C., Blom, P.W.M.: Photocurrent generation in polymer-fullerene bulk heterojunctions. Phys. Rev. Lett. 93, 216601 (2004)

    Google Scholar 

  67. Lenes, M., Koster, L.J.A., Mihailetchi, V.D., Blom, P.W.M.: Thickness dependence of the efficiency of polymer:fullerene bulk heterojunction solar cells. Appl. Phys. Lett. 88, 243502 (2006)

    Google Scholar 

  68. Limpinsel, M., Wagenpfahl, A., Mingebach, M., Deibel, C.: Photocurrent in bulk heterojunction solar cells. Phys. Rev. B 81, 085203 (2010)

    Google Scholar 

  69. Etzold, F., Howard, La, Mauer, R., Meister, M., Kim, T.-D., Lee, K.-S., Baek, N.S., Laquai, F.: Ultrafast exciton dissociation followed by nongeminate charge recombination in PCDTBT: PCBM photovoltaic blends. J. Am. Chem. Soc. 133, 9469–9479 (2011)

    Google Scholar 

  70. Gommans, H.H.P., Kemerink, M., Kramer, J.M., Janssen, R.A.J.: Field and temperature dependence of the photocurrent in polymer/fullerene bulk heterojunction solar cells. Appl. Phys. Lett. 87, 122104 (2005)

    Google Scholar 

  71. Hilczer, M., Tachiya, M.: Unified theory of geminate and bulk electron-hole recombination in organic solar cells. J. Phys. Chem. C 114, 6808–6813 (2010)

    Google Scholar 

  72. Deibel, C.: Charge carrier dissociation and recombination in polymer solar cells. Phys. Status Solidi A 2736, 2731–2736 (2009)

    Google Scholar 

  73. Pal, S.K., Kesti, T., Maiti, M., Zhang, F., Inganäs, O., Hellström, S., Andersson, M.R., Oswald, F., Langa, F., Osterman, T., Pascher, T., Yartsev, A., Sundström, V.: Geminate charge recombination in polymer/fullerene bulk heterojunction films and implications for solar cell function. J. Am. Chem. Soc. 132, 12440–12451 (2010)

    Google Scholar 

  74. Murthy, D.H.K., Gao, M., Vermeulen, M.J.W., Siebbeles, L.D.a, Savenij, T.J.: Mechanism of mobile charge carrier generation in blends of conjugated polymers and fullerenes: significance of charge delocalization and excess free energy. J. Phys. Chem. C 116, 9214–9220 (2012)

    Google Scholar 

  75. Panda, P., Veldman, D., Sweelssen, J., Bastiaansen, J.J.A.M., Langeveld-Voss, B.M.W., Meskers, S.C.J.: Charge transfer absorption for pi-conjugated polymers and oligomers mixed with electron acceptors. J. Phys. Chem. B 111, 5076–5081 (2007)

    Google Scholar 

  76. Vandewal, K., Gadisa, A., Oosterbaan, W.D., Bertho, S., Banishoeib, F., Van Severen, I., Lutsen, L., Cleij, T.J., Vanderzande, D., Manca, J.V.: The relation between open-circuit voltage and the onset of photocurrent generation by charge-transfer absorption in polymer: fullerene bulk heterojunction solar cells. Adv. Funct. Mater. 18, 2064–2070 (2008)

    Google Scholar 

  77. Hallermann, M., Kriegel, I., Da Como, E., Berger, J.M., Von Hauff, E., Feldmann, J.: Charge transfer excitons in polymer/fullerene blends: the role of morphology and polymer chain conformation. Adv. Funct. Mater. 19, 3662–3668 (2009)

    Google Scholar 

  78. Tvingstedt, K., Vandewal, K., Gadisa, A., Zhang, F., Manca, J., Inganäs, O.: Electroluminescence from charge transfer states in polymer solar cells. J. Am. Chem. Soc. 131, 11819–24 (2009)

    Google Scholar 

  79. Vandewal, K., Tvingstedt, K., Gadisa, A., Inganäs, O., Manca, J.V.: On the origin of the open-circuit voltage of polymer-fullerene solar cells. Nat. Mater. 8, 904–909 (2009)

    Google Scholar 

  80. Vandewal, K., Goris, L., Haeldermans, I., Nesladek, M., Haenen, K., Wagner, P., Manca, J.V.: Fourier-transform photocurrent spectroscopy for a fast and highly sensitive spectral characterization of organic and hybrid solar cells. Thin Solid Films 516, 7135–7138 (2008)

    Google Scholar 

  81. Zhou, Y., Tvingstedt, K., Zhang, F., Du, C., Ni, W.-X., Andersson, M.R., Inganäs, O.: Observation of a charge transfer state in low-bandgap polymer/fullerene blend systems by photoluminescence and electroluminescence studies. Adv. Funct. Mater. 19, 3293–3299 (2009)

    Google Scholar 

  82. Veldman, D., Meskers, S.C.J., Janssen, R.A.J.: The energy of charge-transfer states in electron donor-acceptor blends: insight into the energy losses in organic solar cells. Adv. Funct. Mater. 19, 39–48 (2009)

    Google Scholar 

  83. Rao, A., Chow, P.C.Y., Gélinas, S., Schlenker, C.W., Li, C-Z., Yip, H-L., Jen, A.K-Y, Ginger, D.S., Friend, R.H.: The role of spin in the kinetic control of recombination in organic photovoltaics. Nature 500, 435–439 (2013)

    Google Scholar 

  84. Lee, J., Vandewal, K., Yost, S.R., Bahlke, M.E., Goris, L., Baldo, M.A., Manca, J.V., Van Voorhis, T.: Charge transfer state versus hot exciton dissociation in polymer-fullerene blended solar cells. J. Am. Chem. Soc. 132, 11878–11878 (2010)

    Google Scholar 

  85. Vandewal, K., Albrecht, S., Hoke, E.T., Graham, K.R., Widmer, J., Douglas, J.D., Schubert, M., Mateker, W.R., Bloking, J.T., Burkhard, G.F., Sellinger, A., Fréchet, J.M.J., Amassian, A., Riede, M.K., McGehee, M.D., Neher, D., Salleo, A.: Efficient charge generation by relaxed charge-transfer states at organic interfaces. Nat. Mater. 13, 63–68 (2014)

    Google Scholar 

  86. Hofstad, T.G. J.d., Di Nuzzo, D., van den Berg, M., Janssen, R.A.J., Meskers, S.C.J.: Influence of photon excess energy on charge carrier dynamics in a polymer-fullerene solar cell. Adv. Energy Mater. 2, 1095–1099 (2012)

    Google Scholar 

  87. Ohkita, H., Cook, S., Astuti, Y., Duffy, W., Tierney, S., Zhang, W., Heeney, M., McCulloch, I., Nelson, J., Bradley, D.D.C., Durrant, J.R.: Charge carrier formation in polythiophene/fullerene blend films studied by transient absorption spectroscopy. J. Am. Chem. Soc. 130, 3030–42 (2008)

    Google Scholar 

  88. Zhu, X.-Y., Yang, Q., Muntwiler, M.: Charge-transfer excitons at organic semiconductor surfaces and interfaces. Acc. Chem. Res. 42, 1779–1787 (2009)

    Google Scholar 

  89. Bakulin, A.A., Rao, A., Pavelyev, V.G., Loosdrecht, P.H.M., Pshenichnikov, M.S., Niedzialek, D., Cornil, J., Beljonne, D., Friend, R.H.: The role of driving energy and delocalized states for charge separation in organic semiconductors. Science 335, 1340–1344 (2012)

    Google Scholar 

  90. Jailaubekov, A.E., Willard, A.P., Tritsch, J.R., Chan, W.-L., Sai, N., Gearba, R., Kaake, L.G., Williams, K.J., Leung, K., Rossky, P.J., Zhu, X.-Y.: Hot charge-transfer excitons set the time limit for charge separation at donor/acceptor interfaces in organic photovoltaics. Nat. Mater. 12, 66–73 (2013)

    Google Scholar 

  91. Grancini, G., Maiuri, M., Fazzi, D., Petrozza, A., Egelhaaf, H.-J., Brida, D., Cerullo, G., Lanzani, G.: Hot exciton dissociation in polymer solar cells. Nat. Mater. 12, 29–33 (2013)

    Google Scholar 

  92. Wynands, D., Levichkova, M., Leo, K., Uhrich, C., Schwartz, G., Hildebrandt, D., Pfeiffer, M., Riede, M.: Increase in internal quantum efficiency in small molecular oligothiophene: C60 mixed heterojunction solar cells by substrate heating. Appl. Phys. Lett. 97, 073503 (2010)

    Google Scholar 

  93. Scharber, M.C., Mühlbacher, D., Koppe, M., Denk, P., Waldauf, C., Heeger, A.J., Brabec, C.J.: Design rules for donors in bulk-heterojunction solar cells-towards 10 % energy-conversion efficiency. Adv. Mater. 18, 789–794 (2006)

    Google Scholar 

  94. Shuttle, C.G., Maurano, A., Hamilton, R., O’Regan, B., Mello, J.C., Durrant, J.R.: Charge extraction analysis of charge carrier densities in a polythiophene/fullerene solar cell: analysis of the origin of the device dark current. Appl. Phys. Lett. 93, 183501 (2008)

    Google Scholar 

  95. Garcia-Belmonte, G.: Temperature dependence of open-circuit voltage in organic solar cells from generation-recombination kinetic balance. Sol. Energy Mater. Sol. Cells 94, 2166–2169 (2010)

    Google Scholar 

  96. Rand, B.P., Burk, D.P., Forrest, S.R.: Offset energies at organic semiconductor heterojunctions and their influence on the open-circuit voltage of thin-film solar cells. Phys. Rev. B 75, 115327 (2007)

    Google Scholar 

  97. Osotov, M.O., Bruevich, V.V., Paraschuk, D.Y.: Thermal vibrational disorder of a conjugated polymer in charge-transfer complex. J. Chem. Phys. 131, 094906 (2009)

    Google Scholar 

  98. Vandewal, K., Tvingstedt, K., Gadisa, A., Inganäs, O., Manca, J.V.: Relating the open-circuit voltage to interface molecular properties of donor:acceptor bulk heterojunction solar cells. Phys. Rev. B 81, 125204 (2010)

    Google Scholar 

  99. Cheyns, D., Poortmans, J., Heremans, P., Deibel, C., Verlaak, S., Rand, B.P., Genoe, J.: Analytical model for the open-circuit voltage and its associated resistance in organic planar heterojunction solar cells. Phys. Rev. B 77, 165332 (2008)

    Google Scholar 

  100. Mandoc, M.M., Kooistra, F.B., Hummelen, J.C., de Boer, B., Blom, P.W.M.: Effect of traps on the performance of bulk heterojunction organic solar cells. App. Phys. Lett. 91, 263505 (2007)

    Google Scholar 

  101. Cowan, S., Roy, A., Heeger, A.: Recombination in polymer-fullerene bulk heterojunction solar cells. Phys. Rev. B 82, 245207 (2010)

    Google Scholar 

  102. Cowan, S.R., Leong, W.L., Banerji, N., Dennler, G., Heeger, A.J.: Identifying a threshold impurity level for organic solar cells: enhanced first-order recombination via well-defined PC84BM Traps in organic bulk heterojunction solar cells. Adv. Funct. Mater. 21, 3083–3092 (2011)

    Google Scholar 

  103. Schiff, E.A: Low-mobility solar cells: a device physics primer with application to amorphous silicon. Solar Energy Mater. Solar Cells 78, 567–595 (2003)

    Google Scholar 

  104. Mihailetchi, V.D., Wildeman, J., Blom, P.W.M.: Space-charge limited photocurrent. Phys. Rev. Lett. 94, 126602 (2005)

    Google Scholar 

  105. Kirchartz, T., Pieters, B., Taretto, K., Rau, U.: Mobility dependent efficiencies of organic bulk heterojunction solar cells: surface recombination and charge transfer state distribution. Phys. Rev. B 80, 035334 (2009)

    Google Scholar 

  106. Vandewal, K., Tvingstedt, K., Manca, J.V.,Inganäs, O.: Charge-transfer states and upper limit of the open-circuit voltage in polymer: fullerene organic solar cells. IEEE J. Sel. Top. Quantum Electron. 16, 1676–1684 (2010)

    Google Scholar 

  107. Ross, Robert T.: Some thermodynamics of photochemical systems. J. Chem. Phys. 46, 4590 (1967)

    Google Scholar 

  108. Rau, U.: Reciprocity relation between photovoltaic quantum efficiency and electroluminescent emission of solar cells. Phys. Rev. B 76, 085303 (2007)

    Google Scholar 

  109. Donolato, C.: A reciprocity theorem for charge collection. Appl. Phys. Lett. 46, 270 (1985)

    Google Scholar 

  110. Gould, I.R., Noukakis, D., Gomez-Jahn, L., Young, R.H., Goodman, J.L., Farid, S.: Radiative and nonradiative electron transfer in contact radical-ion pairs. Chem. Phys. 176, 439–456 (1993)

    Google Scholar 

  111. Marcus, R.A.: Relation between charge transfer absorption and fluorescence spectra and the inverted region. J. Phys. Chem. 93, 3078–3086 (1989)

    Google Scholar 

  112. Gruber, M., Wagner, J., Klein, K., Hörmann, U., Opitz, A., Stutzmann, M., Brütting, W.: Thermodynamic efficiency limit of molecular donor-acceptor solar cells and its application to diindenoperylene/C60-based planar heterojunction devices. Adv. Energy Mater. 2, 1100–1108 (2012)

    Google Scholar 

  113. Mingebach, M., Deibel, C., Dyakonov, V.: Built-in potential and validity of the Mott-Schottky analysis in organic bulk heterojunction solar cells. Phys. Rev. B 84, 153201 (2011)

    Google Scholar 

  114. Mihailetchi, V.D., Blom, P.W.M., Hummelen, J.C., Rispens, M.T.: Cathode dependence of the open-circuit voltage of polymer: fullerene bulk heterojunction solar cells. J. Appl. Phys. 94, 6849–6854 (2003)

    Google Scholar 

  115. Potscavage, W.J., Yoo, S., Kippelen, B.: Origin of the open-circuit voltage in multilayer heterojunction organic solar cells. Appl. Phys. Lett. 93, 193308 (2008)

    Google Scholar 

  116. Potscavage, W.J., Sharma, A., Kippelen, B.: Critical interfaces in organic solar cells and their influence on the open-circuit voltage. Acc. Chem. Res. 42, 1758–1767 (2009)

    Google Scholar 

  117. Maurano, A., Hamilton, R., Shuttle, C.G., Ballantyne, A.M., Nelson, J., O’Regan, B., Zhang, W., McCulloch, I., Azimi, H., Morana, M., Brabec, C.J., Durrant, J.R.: Recombination dynamics as a key determinant of open circuit voltage in organic bulk heterojunction solar cells: a comparison of four different donor polymers. Adv. Mater. 22, 4987–4992 (2010)

    Google Scholar 

  118. Nelson, J., Kirkpatrick, J., Ravirajan, P.: Factors limiting the efficiency of molecular photovoltaic devices. Phys. Rev. B 69, 035337 (2004)

    Google Scholar 

  119. Koster, L. Jan A.; Shaheen, S.E., Hummelen, J.C.: Pathways to a new efficiency regime for organic solar cells. Adv. Energy Mater. 2, 1246–1253 (2012)

    Google Scholar 

  120. Kirchartz, T., Pieters, B., Kirkpatrick, J., Rau, U., Nelson, J.: Recombination via tail states in polythiophene: fullerene solar cells. Phys. Rev. B 83, 115209 (2011)

    Google Scholar 

  121. Kirchartz, T., Taretto, K., Rau, U.: Efficiency limits of organic bulk heterojunction solar cells. J. Phys. Chem. C 113, 17958–17966 (2009)

    Google Scholar 

  122. Vandewal, K., Oosterbaan, W.D., Bertho, S., Vrindts, V., Gadisa, A., Lutsen, L., Vanderzande, D., Manca, J.V.: Varying polymer crystallinity in nanofiber poly(3-alkylthiophene): PCBM solar cells: influence on charge-transfer state energy and open-circuit voltage. App. Phys. Lett. 95, 123303 (2009)

    Google Scholar 

  123. Piersimoni, F., Chambon, S., Vandewal, K., Mens, R., Boonen, T., Gadisa, A., Izquierdo, M., Filippone, S., Ruttens, B., D’Haen, J., Martin, N., Lutsen, L., Vanderzande, D., Adriaensens, P., Manca, J.V.: Influence of fullerene ordering on the energy of the charge-transfer state and open-circuit voltage in polymer: fullerene solar cells. J. Phys. Chem. C 115, 10873–10880 (2011)

    Google Scholar 

  124. Ko, S., Hoke, E.T., Pandey, L., Hong, S., Mondal, R., Risko, C., Yi, Y., Noriega, R., McGehee, M.D., Brédas, J.-L., Salleo, A., Bao, Z.: Controlled conjugated backbone twisting for an increased open-circuit voltage while having a high short-circuit current in poly(hexylthiophene) derivatives. J. Am. Chem. Soc. 134, 5222–5232 (2012)

    Google Scholar 

  125. Hoke, E.T., Vandewal, K., Bartelt, J.A., Mateker, W.R., Douglas, J.D., Noriega, R., Graham, K.R., Fréchet, J.M.J., Salleo, A., McGehee, M.D.: Recombination in polymer: fullerene solar cells with open-circuit voltages approaching and exceeding 1.0 V. Adv. Energy Mater. 3, 220–230 (2013)

    Google Scholar 

  126. Wang, E., Bergqvist, J., Vandewal, K., Ma, Z., Hou, L., Lundin, A., Himmelberger, S., Salleo, A., Müller, C., Inganäs, O,. Zhang, F., Andersson, M.R.: Conformational disorder enhances solubility and photovoltaic performance of a thiophene-quinoxaline copolymer. Adv. Energy Mater. 3, 806–814 (2013)

    Google Scholar 

  127. Graham, K.R., Erwin, P., Nordlund, D., Vandewal, K., Li, R., Ngongang N.G.O., Hoke, E.T., Salleo, A., Thompson, M.E., McGehee, M.D., Amassian, A.: Re-evaluating the role of sterics and electronic coupling in determining the open-circuit voltage of organic solar cells. Adv. Mater. (Deerfield Beach, Fla.), 6076–6082 (2013)

    Google Scholar 

  128. Tietze, M.L., Tress, W., Pfützner, S., Schünemann, C., Burtone, L., Riede, M., Leo, K., Vandewal, K., Olthof, S., Schulz, P., Kahn, A.: Correlation of open-circuit voltage and energy levels in zinc-phthalocyanine: C\_60 bulk heterojunction solar cells with varied mixing ratio. Phys. Rev. B 88, 085119 (2013)

    Google Scholar 

  129. Nayak, P.K., Bisquert, J., Cahen, D.: Assessing possibilities and limits for solar cells. Adv. Mater. 23, 2870–2876 (2011)

    Google Scholar 

  130. Sokel, R., Hughes, R.C.: Numerical analysis of transient photoconductivity in insulators. J. Appl. Phys. 53, 7414–7424 (1982)

    Google Scholar 

  131. Brabec, C.J., Cravino, A., Zerza, G., Sariciftci, N.S., Kiebooms, R., Vanderzande, D., Hummelen, J.C.: Photoactive blends of poly (para-phenylenevinylene) (PPV) with methanofullerenes from a Novel Precursor: photophysics and device performance. J. Phys. Chem. B 105, 1528–1536 (2001)

    Google Scholar 

  132. Waldauf, C., Schilinsky, P., Hauch, J., Brabec, C.J.: Material and device concepts for organic photovoltaics: towards competitive efficiencies. Thin Solid Films 451, 503–507 (2004)

    Google Scholar 

  133. Waldauf, C., Scharber, M.C., Schilinsky, P., Hauch, J.A., Brabec, C.J.: Physics of organic bulk heterojunction devices for photovoltaic applications. J. Appl. Phys. 99, 104503 (2006)

    Google Scholar 

  134. Roy, M.S., Balraju, P., Deol, Y.S., Sharma, S.K., Sharma, G.D.: Charge-transport and photocurrent generation in bulk heterojunction based on Chloro-aluminum phthalocyanine (ClAlPc) and Rose Bengal (RB). J. Mater. Sci. 43, 5551–5563 (2008)

    Google Scholar 

  135. Yu, J., Huang, J., Zhang, L., Jiang, Y.: Energy losing rate and open-circuit voltage analysis of organic solar cells based on detailed photocurrent simulation. J. Appl. Phys. 106, 063103 (2009)

    Google Scholar 

  136. Cheknane, A., Hilal, H., Djeffal, F., Benyoucef, B., Charles, J.: An equivalent circuit approach to organic solar cell modelling. Microelectron. J. 39, 1173–1180 (2008)

    Google Scholar 

  137. Schilinsky, P., Waldauf, C., Hauch, J., Brabec, C.J.: Simulation of light intensity dependent current characteristics of polymer solar cells. J. App. Phys. 95, 2816–2819 (2004)

    Google Scholar 

  138. Kumar, P., Jain, S.C., Kumar, V., Chand, S., Tandon, R.P.: A model for the current-voltage characteristics of organic bulk heterojunction solar cells. J. Phys. D Appl. Phys. 42, 055102 (2009)

    Google Scholar 

  139. Goodman, A.M., Rose, A.: Double extraction of uniformly generated electron-hole pairs form insulators with non-injecting contacts. J. Appl. Phys. 42, 2823–2830 (1971)

    Google Scholar 

  140. Crandall, Richard S.: Transport in hydrogenated amorphous silicon p-i-n solar cells. J. Appl. Phys. 53, 3350 (1982)

    Google Scholar 

  141. Hecht, Karl: Zum Mechanismus des lichtelektrischen Primaerstromes in isolierenden Kristallen. Z. Phys. 77, 235–245 (1932)

    Google Scholar 

  142. Street, R.A., Schoendorf, M.: Interface state recombination in organic solar cells. Phys. Rev. B 81, 205307 (2010)

    Google Scholar 

  143. Kirchartz, T., Agostinelli, T., Campoy-Quiles, M., Gong, W., Nelson, J.: Understanding the thickness-dependent performance of organic bulk heterojunction solar cells: the influence of mobility, lifetime, and space charge. J. Phys. Chem. Lett. 3, 3470–3475 (2012)

    Google Scholar 

  144. Deibel, C., Dyakonov, V.: Polymer-fullerene bulk heterojunction solar cells. Rep. Prog. Phys. 73, 096401 (2010)

    Google Scholar 

  145. Strobel, T., Deibel, C., Dyakonov, V.: Role of polaron pair diffusion and surface losses in organic semiconductor devices. Phys. Rev. Lett. 105, 266602 (2010)

    Google Scholar 

  146. Goris, L., Haenen, K., Nesládek, M., Wagner, P., Vanderzande, D., Schepper, L., D’Haen, J., Lutsen, L., Manca, J.V.: Absorption phenomena in organic thin films for solar cell applications investigated by photothermal deflection spectroscopy. J. Mater. Sci. 40, 1413–1418 (2005)

    Google Scholar 

  147. Presselt, M., Bärenklau, M., Rösch, R., Beenken, W.J.D., Runge, E., Shokhovets, S., Hoppe, H., Gobsch, G.: Subbandgap absorption in polymer-fullerene solar cells. App. Phys. Lett. 97, 253302 (2010)

    Google Scholar 

  148. Ruani, G., Fontanini, C., Murgia, M., Taliani, C.: Weak intrinsic charge transfer complexes: a new route for developing wide spectrum organic photovoltaic cells. J. Chem. Phys. 116, 1713 (2002)

    Google Scholar 

  149. Loi, M.A., Toffanin, S., Muccini, M., Forster, M., Scherf, U., Scharber, M.: Charge transfer excitons in bulk heterojunctions of a polyfluorene copolymer and a fullerene derivative. Adv. Funct. Mater. 17, 2111–2116 (2007)

    Google Scholar 

  150. Benson-Smith, J.J., Goris, L., Vandewal, K., Haenen, K., Manca, J.V., Vanderzande, D., Bradley, D.D.C., Nelson, J.: Formation of a ground-state charge-transfer complex in polyfluorene//[6,6]-phenyl-C61 butyric acid methyl ester (PCBM) blend films and its role in the function of polymer/PCBM solar cells. Adv. Funct. Mater. 17, 451–457 (2007)

    Google Scholar 

  151. Hallermann, M., Haneder, S., Da Como, E.: Charge-transfer states in conjugated polymer/fullerene blends: below-gap weakly bound excitons for polymer photovoltaics. App. Phys. Lett. 93, 053307 (2008)

    Google Scholar 

  152. Scharber, M.C., Lungenschmied, C., Egelhaaf, H.-J., Matt, G., Bednorz, M., Fromherz, T., Gao, J., Jarzab, D., Loi, M.A.: Charge transfer excitons in low band gap polymer based solar cells and the role of processing additives. Energy Environ. Sci. 4, 5077 (2011)

    Google Scholar 

  153. Kern, J., Schwab, S., Deibel, C., Dyakonov, V.: Binding energy of singlet excitons and charge transfer complexes in MDMO-PPV: PCBM solar cells. Phys. Status Solidi (RRL)—Rapid Res. Lett. 5, 364–366 (2011)

    Google Scholar 

  154. Kim, H., Kim, J.Y., Park, S.H., Lee, K., Jin, Y., Kim, J., Suh, H.: Electroluminescence in polymer-fullerene photovoltaic cells. App. Phys. Lett. 86, 183502 (2005)

    Google Scholar 

  155. Faist, M.A., Kirchartz, T., Gong, W., Ashraf, R.S., McCulloch, I., Mello, J.C., Ekins-Daukes, N.J., Bradley, D.D.C., Nelson, J.: Competition between the charge transfer state and the singlet states of donor or acceptor limiting the efficiency in polymer: fullerene solar cells. J. Am. Chem. Soc. 134, 685–692 (2012)

    Google Scholar 

  156. Tvingstedt, K., Vandewal, K.: On the dissociation efficiency of charge transfer excitons and Frenkel excitons in organic solar cells: a luminescence quenching study. J. Phys. 21824–21832 (2010)

    Google Scholar 

  157. Veldman, D., Bastiaansen, J.J., Langeveld-Voss, B.M., Sweelssen, J., Koetse, M.M., Meskers, S.C., Janssen, R.A.J.: Photoinduced charge and energy transfer in dye-doped conjugated polymers. Thin Solid Films 511–512, 581–586 (2006)

    Google Scholar 

  158. Veldman, D., Chopin, S.M.A, Meskers, S.C.J., Janssen, R.A.J: Enhanced intersystem crossing via a high energy charge transfer state in a perylenediimide-perylenemonoimide dyad. J. Phys. Chem. A 112, 8617–8632 (2008)

    Google Scholar 

  159. Koerner, C., Ziehlke, H., Gresser, R., Fitzner, R., Reinold, E., Bäuerle, P., Leo, K., Riede, M.: Temperature activation of the photoinduced charge carrier generation efficiency in quaterthiophene: C60 mixed films. J. Phys. Chem. C 116, 25097–25105 (2012)

    Google Scholar 

  160. Keivanidis, P.E., Kamm, V., Zhang, W., Floudas, G., Laquai, F., McCulloch, I., Bradley, D.D.C., Nelson, J.: Correlating emissive non-geminate charge recombination with photocurrent generation efficiency in polymer/perylene diimide organic photovoltaic blend films. Adv. Funct. Mater. 22, 2318–2326 (2012)

    Google Scholar 

  161. Offermans, T., Meskers, S.C.J., Janssen, R.A.J.: Time delayed collection field experiments on polymer: fullerene bulk-heterojunction solar cells. J. Appl. Phys. 100, 074509 (2006)

    Google Scholar 

  162. Kniepert, J., Schubert, M., Blakesley, J.C., Neher, D.: Photogeneration and recombination in P3HT/PCBM solar cells probed by time-delayed collection field experiments. J. Phys. Chem. Lett. 2, 700–705 (2011)

    Google Scholar 

  163. Albrecht, S., Schindler, W., Kurpiers, J., Kniepert, J., Blakesley, J.C., Dumsch, I., Allard, S., Fostiropoulos, K., Scherf, U.,Neher, D.: On the field dependence of free charge carrier generation and recombination in blends of PCPDTBT/PC 70 BM: influence of solvent additives. J. Phys. Chem. Lett. 3, 640–645 (2012)

    Google Scholar 

  164. Mingebach, M., Walter, S., Dyakonov, V., Deibel, C.: Direct and charge transfer state mediated photogeneration in polymer-fullerene bulk heterojunction solar cells. Appl. Phys. Lett. 100, 193302 (2012)

    Google Scholar 

  165. Credgington, D., Jamieson, F.C., Walker, B., Nguyen, T.-Q., Durrant, J.R.: Quantification of geminate and non-geminate recombination losses within a solution-processed small-molecule bulk heterojunction solar cell. Adv. Mater. (Deerfield Beach, Fla.) 24, 2135–2141 (2012)

    Google Scholar 

  166. Cabanillas-Gonzalez, J., Grancini, G., Lanzani, G.: Pump-probe spectroscopy in organic semiconductors: monitoring fundamental processes of relevance in optoelectronics. Adv. Mater. (Deerfield Beach, Fla.) 23, 5468–5485 (2011)

    Google Scholar 

  167. De, S., Pascher, T., Maiti, M., Jespersen, K.G., Kesti, T., Zhang, F., Inganäs, O., Yartsev, A., Sundström, V.: Geminate charge recombination in alternating polyfluorene copolymer/fullerene blends. J. Am. Chem. Soc. 129, 8466–8472 (2007)

    Google Scholar 

  168. Ohkita, H., Ito, S.: Transient absorption spectroscopy of polymer-based thin-film solar cells. Polymer 52, 4397–4417 (2011)

    Google Scholar 

  169. Marsh, R.A., Hodgkiss, J.M., Friend, R.H.: Direct measurement of electric field-assisted charge separation in polymer: fullerene photovoltaic diodes. Adv. Mater. (Deerfield Beach, Fla.) 22, 3672–3676 (2010)

    Google Scholar 

  170. Hodgkiss, J.M., Campbell, A.R., Marsh, R.A., Rao, A., Albert-Seifried, S., Friend, R.H.: Subnanosecond geminate charge recombination in polymer-polymer photovoltaic devices. Phys. Rev. Lett. 104, 177701 (2010)

    Google Scholar 

  171. Howard, I.A., Laquai, F.: Optical probes of charge generation and recombination in bulk heterojunction organic solar cells. Macromol. Chem. Phys. 211, 2063–2070 (2010)

    Google Scholar 

  172. Drori, T., Holt, J., Vardeny, Z.V.: Optical studies of the charge transfer complex in polythiophene/fullerene blends for organic photovoltaic applications. Phys. Rev. B 82, 075207 (2010)

    Google Scholar 

  173. Jamieson, F.C., Agostinelli, T., Azimi, H., Nelson, J., Durrant, J.R.: Field-independent charge photogeneration in PCPDTBT/PC 70 BM solar cells. J. Phys. Chem. Lett. 1, 3306–3310 (2010)

    Google Scholar 

  174. Grzegorczyk, W.J., Savenije, T.J., Dykstra, T.E., Piris, J., Schins, J.M., Siebbeles, L.D.: Temperature-independent charge carrier photogeneration in P3HT-PCBM blends with different morphology. J. Phys. Chem. C 114, 5182–5186 (2010)

    Google Scholar 

  175. Muntwiler, M., Yang, Q., Tisdale, W., Zhu, X.-Y.: Coulomb barrier for charge separation at an organic semiconductor interface. Phys. Rev. Lett. 101, 196403 (2008)

    Google Scholar 

  176. van Eersel, H., Janssen, R.A.J., Kemerink, M.: Mechanism for efficient photoinduced charge separation at disordered organic heterointerfaces. Adv. Funct. Mater. 22, 2700–2708 (2012)

    Google Scholar 

  177. Bakulin, A.A., Dimitrov, S.D., Rao, A., Chow, P.C.Y., Nielsen, C.B., Schroeder, B.C., McCulloch, I., Bakker, H.J., Durrant, J.R., Friend, R.H.: Charge-transfer state dynamics following hole and electron transfer in organic photovoltaic devices. J. Phys. Chem. Lett. 4, 209–215 (2013)

    Google Scholar 

  178. Silva, Carlos: Organic photovoltaics: some like it hot. Nat. Mater. 12, 5–6 (2013)

    Google Scholar 

  179. Falke, S.M. et al.: Coherent ultrafast charge transfer in an organic photovoltaic blend. Science 344, 1001–1005 (2014)

    Google Scholar 

  180. Gélinas, S. et al.: Ultrafast long-range charge separation in organic semiconductor photovoltaic diodes. Science 343, 512–516 (2014)

    Google Scholar 

  181. Bernardo, B. et al.: Delocalization and dielectric screening of charge transfer states in organic photovoltaic cells. Nat. Commun. 5, 3245 (2014)

    Google Scholar 

  182. Kaake, L.G., Jasieniak, J.J., Bakus, R.C., Welch, G.C., Moses, D., Bazan, G.C., Heeger, A.J.: Photoinduced charge generation in a molecular bulk heterojunction material. J. Am. Chem. Soc. 134, 19828–19838 (2012)

    Google Scholar 

  183. Schottky, W.: Zeitschrift für Physik Z 41, 570 (1940)

    Google Scholar 

  184. Mott, N.F.: Note on the contact between a metal and an insulator or semi-conductor. Math. Proc. Cambridge Philos. Soc. 34, 568 (1938)

    Google Scholar 

  185. Hill, I.G., Milliron, D., Schwartz, J., Kahn, A.: Organic semiconductor interfaces: electronic structure and transport properties. Appl. Surf. Sci. 166, 354–362 (2000)

    Google Scholar 

  186. Bardeen, J.: Surface states and rectification at a metal semi-conductor contact. Phys. Rev. 71, 717–727 (1947)

    Google Scholar 

  187. Cowley, A.M., Sze, S.M.: Surface states and barrier height of metal-semiconductor systems. J. Appl. Phys. 36, 3212–3220 (1965)

    Google Scholar 

  188. Heine, V.: Theory of surface states. Phys. Rev. 138, 1689–1696 (1965)

    Google Scholar 

  189. Mönch, W.: Metal-semiconductor contacts: electronic properties. Surf. Sci. 299, 928–944 (1994)

    Google Scholar 

  190. Tung, Raymond T.: The physics and chemistry of the Schottky barrier height. Appl. Phys. Rev. 1, 011304 (2014)

    Google Scholar 

  191. Vazquez, H., Flores, F., Oszwaldowski, R., Ortega, J., Perez, R., Kahn, A.: Barrier formation at metal-organic interfaces: dipole formation and the charge neutrality level. Appl. Surf. Sci. 234, 107–112 (2004)

    Google Scholar 

  192. Ishii, H., Sugiyama, K., Ito, E., Seki, K.: Energy level alignment and interfacial electronic structures at organic/metal and organic/organic interfaces. Adv. Mater. 11, 605–625 (1999)

    Google Scholar 

  193. Hwang, J., Wan, A., Kahn, A.: Energetics of metal-organic interfaces: new experiments and assessment of the field. Mater. Sci. Eng. R Rep. 64, 1–31 (2009)

    Google Scholar 

  194. Knupfer, M., Paasch, G.: Origin of the interface dipole at interfaces between undoped organic semiconductors and metals. J. Vac. Sci. Tech. A: Vac. Surf. Films 23, 1072–1077 (2005)

    Google Scholar 

  195. Olthof, S., Tress, W., Meerheim, R., Lüssem, B., Leo, K.: Photoelectron spectroscopy study of systematically varied doping concentrations in an organic semiconductor layer using a molecular p-dopant. J. Appl. Phys. 106, 103711 (2009)

    Google Scholar 

  196. Crispin, A., Crispin, X., Fahlman, M., Berggren, M., Salaneck, W.R.: Transition between energy level alignment regimes at a low band gap polymer-electrode interfaces. Appl. Phys. Lett. 89, 213503 (2006)

    Google Scholar 

  197. Fahlman, M., Crispin, A., Crispin, X., Henze, S.K.M., Jong, M.P., Osikowicz, W., Tengstedt, C., Salaneck, W.R.: Electronic structure of hybrid interfaces for polymer-based electronics. J. Phys.: Condens. Matter 19, 183202 (2007)

    Google Scholar 

  198. Tengstedt, C., Osikowicz, W., Salaneck, W.R., Parker, I.D., Hsu, C.-H., Fahlman, M.: Fermi-level pinning at conjugated polymer interfaces. Appl. Phys. Lett. 88, 053502 (2006)

    Google Scholar 

  199. Davids, P.S., Saxena, A., Smith, D.L.: Bipolaron lattice formation at metal-polymer interfaces. Phys. Rev. B 53, 4823–4833 (1996)

    Google Scholar 

  200. Blakesley, J.C., Greenham, N.C.: Charge transfer at polymer-electrode interfaces: the effect of energetic disorder and thermal injection on band bending and open-circuit voltage. J. Appl. Phys. 106, 034507 (2009)

    Google Scholar 

  201. Hirose, Y., Kahn, A., Aristov, V., Soukiassian, P., Bulovic, V., Forrest, S.R.: Chemistry and electronic properties of metal-organic semiconductor interfaces: Al, Ti, In, Sn, Ag, and Au on PTCDA. Phys. Rev. B 54, 13748–13758 (1996)

    Google Scholar 

  202. Hirose, Y., Kahn, A., Aristov, V., Soukiassian, P.: Chemistry, diffusion, and electronic properties of a metal/organic semiconductor contact: in/perylenetetracarboxylic dianhydride. Appl. Phys. Lett. 68, 217–219 (1996)

    Google Scholar 

  203. Lee, S.T., Gao, Z.Q., Hung, L.S.: Metal diffusion from electrodes in organic light-emitting diodes. Appl. Phys. Lett. 75, 1404–1406 (1999)

    Google Scholar 

  204. Hagen, S., Luo, Y., Haag, R., Wolf, M., Tegeder, P.: Electronic structure and electron dynamics at an organic molecule/metal interface: interface states of tetra-tert-butyl-imine/Au(111). New J. Phys. 12, 125022 (2010)

    Google Scholar 

  205. Rusu, P.C., Giovannetti, G., Weijtens, C., Coehoorn, R., Brocks, G.: First-principles study of the dipole layer formation at metal-organic interfaces. Phys. Rev. B 81, 125403 (2010)

    Google Scholar 

  206. Lennartz, M., Caciuc, V., Atodiresei, N., Karthäuser, S., Blügel, S.: Electronic mapping of molecular orbitals at the molecule-metal interface. Phys. Rev. Lett. 105, 066801 (2010)

    Google Scholar 

  207. Shaheen, S.E., Radspinner, R., Peyghambarian, N., Jabbour, G.E.: Fabrication of bulk heterojunction plastic solar cells by screen printing. Appl. Phys. Lett. 79, 2996–2998 (2001)

    Google Scholar 

  208. Krebs, F.C., Jorgensen, M., Norrman, K., Hagemann, O., Alstrup, J., Nielsen, T.D., Fyenbo, J., Larsen, K., Kristensen, J.: A complete process for production of flexible large area polymer solar cells entirely using screen printing - First public demonstration. Sol. Energy Mater. Sol. Cells 93, 422–441 (2009)

    Google Scholar 

  209. Krebs, F.C.: Polymer solar cell modules prepared using roll-to-roll methods: Knife-over-edge coating, slot-die coating and screen printing. Sol. Energy Mater. Sol. Cells 93, 465–475 (2009)

    Google Scholar 

  210. Brabec, C.J., Padinger, F., Hummelen, J.C., Janssen, R.A.J., Sariciftci, N.S.: Realization of large area flexible fullerene-conjugated polymer photocells: a route to plastic solar cells. Synth. Met. 102, 861–864 (1999)

    Google Scholar 

  211. Krebs, F.C.: Fabrication and processing of polymer solar cells: a review of printing and coating techniques. Sol. Energy Mater. Sol. Cells 93, 394–412 (2009)

    Google Scholar 

  212. Espinosa, N., García-Valverde, R., Urbina, A., Krebs, F.C.: A life cycle analysis of polymer solar cell modules prepared using roll-to-roll methods under ambient conditions. Sol. Energy Mater. Sol. Cells 95, 1293–1302 (2011)

    Google Scholar 

  213. Glatthaar, M., Niggemann, M., Zimmermann, B., Lewer, P., Riede, M., Hinsch, A., Luther, J.: Organic solar cells using inverted layer sequence. Thin Solid Films 491, 298–300 (2005)

    Google Scholar 

  214. Pfeiffer, M., Beyer, A., Fritz, T., Leo, K.: Controlled doping of phthalocyanine layers by cosublimation with acceptor molecules: A systematic Seebeck and conductivity study. Appl. Phys. Lett. 73, 3202–3204 (1998)

    Google Scholar 

  215. Pfeiffer, M.: Doped organic semiconductors: Physics and application in light emitting diodes. Org. Electron. 4, 89–103 (2003)

    Google Scholar 

  216. Maennig, B., Drechsel, J., Gebeyehu, D., Simon, P., Kozlowski, F., Werner, A., Li, F., Grundmann, S., Sonntag, S., Koch, M., Leo, K., Pfeiffer, M., Hoppe, H., Meissner, D., Sariciftci, N.S., Riedel, I., Dyakonov, V., Parisi, J.: Organic p-i-n solar cells. Appl. Phys. A 79, 1–14 (2004)

    Google Scholar 

  217. Riede, M., Mueller, T., Tress, W., Schueppel, R., Leo, K.: Small-molecule solar cells-status and perspectives. Nanotechnology 19, 424001 (2008)

    Google Scholar 

  218. Xue, J., Rand, B.P., Uchida, S., Forrest, S.R.: A hybrid planar-mixed molecular heterojunction photovoltaic cell. Adv. Mater. 17, 66–71 (2005)

    Google Scholar 

  219. Wynands, D., Männig, B., Riede, M., Leo, K., Brier, E., Reinold, E., Bäuerle, P.: Organic thin film photovoltaic cells based on planar and mixed heterojunctions between fullerene and a low bandgap oligothiophene. J. Appl. Phys. 106, 054509 (2009)

    Google Scholar 

  220. Kerp, H.R., Van Faassen, E.E.: Effects of oxygen on exciton transport in zinc phthalocyanine layers. Chem. Phys. Lett. 332, 5–12 (2000)

    Google Scholar 

  221. Singh, ThB, Sariciftci, N.S., Yang, H., Yang, L., Plochberger, B., Sitter, H.: Correlation of crystalline and structural properties of C60 thin films grown at various temperature with charge carrier mobility. Appl. Phys. Lett. 90, 213512 (2007)

    Google Scholar 

  222. Lunt, R.R., Benziger, J.B., Forrest, S.R.: Relationship between crystalline order and exciton diffusion length in molecular organic semiconductors. Adv. Mater. 22, 1233–1236 (2010)

    Google Scholar 

  223. Kurrle, D., Pflaum, J.: Exciton diffusion length in the organic semiconductor diindenoperylene. Appl. Phys. Lett. 92, 133306 (2008)

    Google Scholar 

  224. Bratsch, S.G.: Revised Mulliken electronegativities: II. Applications and limitations. J. Chem. Educ. 65, 223–227 (1988)

    Google Scholar 

  225. Hansch, C., Leo, A., Taft, R.W.: A survey of Hammett substituent constants and resonance and field parameters. Chem. Rev. 91, 165–195 (1991)

    Google Scholar 

  226. Gregg, B.A.: Bilayer molecular solar cells on spin-coated TiO2 substrates. Chem. Phys. Lett. 258, 376–380 (1996)

    Google Scholar 

  227. Senthilarasu, S., Velumani, S., Sathyamoorthy, R., Canizal, G., Sebastian, P.J., Chavez, J.A., Perez, R., Subbarayan, A., Ascencio, J.A.: Characterization of zinc phthalocyanine (ZnPc) for photovoltaic applications. Appl. Phys. A 77, 383–389 (2003)

    Google Scholar 

  228. Liao, M.-S., Scheiner, S.: Electronic structure and bonding in metal phthalocyanines, Metal\(=\)Fe Co, Ni, Cu, Zn, Mg. J. Chem. Phys. 114, 9780–9791 (2001)

    Google Scholar 

  229. Rand, B.P., Xue, J., Yang, F., Forrest, S.R.: Organic solar cells with sensitivity extending into the near infrared. Appl. Phys. Lett. 87, 233508 (2005)

    Google Scholar 

  230. Bailey-Salzman, R.F., Rand, B.P., Forrest, S.R.: Near-infrared sensitive small molecule organic photovoltaic cells based on chloroaluminum phthalocyanine. Appl. Phys. Lett. 91, 013508 (2007)

    Google Scholar 

  231. Day, P.N., Wang, Z., Pachter, R.: Calculation of the structure and absorption spectra of phthalocyanines in the gas-phase and in solution. J. Mol. Struct. (Theochem) 455, 33–50 (1998)

    Google Scholar 

  232. Schünemann, C., Elschner, C., Levin, A.A., Levichkova, M., Leo, K., Riede, M.: Zinc phthalocyanine—Influence of substrate temperature, film thickness, and kind of substrate on the morphology. Thin Solid Films 519, 3939–3945 (2011)

    Google Scholar 

  233. Dewar, M.J.S., Zoebisch, E.G., Healy, E.F., Stewart, J.J.P.: Development and use of quantum mechanical molecular models. 76. AM1: a new general purpose quantum mechanical molecular model. J. Am. Chem. Soc. 107, 3902–3909 (1985)

    Google Scholar 

  234. Stewart, J.J.P.: MOPAC: a semiempirical molecular orbital program. J. Comput. Aided Mol. Des. 4, 1–103 (1990)

    Google Scholar 

  235. Meiss, J., Merten, A., Hein, M., Schuenemann, C., Schäfer, S., Tietze, M., Uhrich, C., Pfeiffer, M., Leo, K., Riede, M.: Fluorinated zinc phthalocyanine as donor for efficient vacuum-deposited organic solar cells. Adv. Funct. Mater. (2011)

    Google Scholar 

  236. Weiler, U., Mayer, T., Jaegermann, W., Kelting, C., Schlettwein, D., Makarov, S., Wöhrle, D.: Electronic energy levels of organic dyes on silicon: a photoelectron spectroscopy study of ZnPc, F16 ZnPc, and ZnTPP on p-Si(111):H. J. Phys. Chem. B 108, 19398–19403 (2004)

    Google Scholar 

  237. Cho, S., Yi, Y., Noh, M., Cho, M., Yoo, K., Jeong, K., Whang, C.: Energy level alignment in N,N\(^{\prime }\)-bis(1-naphthyl)-N,N\(^{\prime }\)-diphenyl-1,1\(^{\prime }\)-biphenyl-4,4\(^{\prime }\)-diamine (NPB)/hexadecafluoro copper phthalocyanine (F16CuPc)/Au and NPB/CuPc/Au heterojunction. Synth. Met. 158, 539–543 (2008)

    Google Scholar 

  238. Chen, W., Huang, H., Chen, S., Huang, Y.L., Gao, X.Y., Wee, A.T.S.: Molecular orientation-dependent ionization potential of organic thin films. Chem. Mater. 20, 7017–7021 (2008)

    Google Scholar 

  239. Wehmeier, M., Wagner, M., Müllen, K.: Novel perylene chromophores obtained by a facile oxidative cyclodehydrogenation route. Chem. A Eur. J. 7, 2197–2205 (2001)

    Google Scholar 

  240. Dürr, A.C., Schreiber, F., Münch, M., Karl, N., Krause, B., Kruppa, V., Dosch, H.: High structural order in thin films of the organic semiconductor diindenoperylene. Appl. Phys. Lett. 81, 2276–2278 (2002)

    Google Scholar 

  241. Wagner, J., Gruber, M., Hinderhofer, A., Wilke, A., Bröker, B., Frisch, J., Amsalem, P., Vollmer, A., Opitz, A., Koch, N., Schreiber, F., Brütting, W.: High fill factor and open circuit voltage in organic photovoltaic cells with diindenoperylene as donor material. Adv. Funct. Mater. 20, 4295–4303 (2010)

    Google Scholar 

  242. Ferguson, A.J., Jones, T.S.: Photophysics of PTCDA and Me-PTCDI thin films: effects of growth temperature. J. Phys. Chem. B 110, 6891–6898 (2006)

    Google Scholar 

  243. Kroto, H.W., Heath, J.R., O’Brian, S.C., Curl, R.F., Smalley, R.E.: C60: Buckminsterfullerene. Nature 318, 162–163 (1985)

    Google Scholar 

  244. Krätschmer, W., Lamb, L.D., Fostiropoulos, K., Huffman, D.R.: Solid C60: a new form of carbon. Nature 347, 354–357 (1990)

    Google Scholar 

  245. Krätschmer, W., Fostiropoulos, K., Huffman, D.R.: The infrared and ultraviolet absorption spectra of laboratory-produced carbon dust: evidence for the presence of the C60 molecule. Chem. Phys. Lett. 170, 167–170 (1990)

    Google Scholar 

  246. Hedberg, K., Hedberg, L., Bethune, D.S., Brown, C.A., Dorn, H.C., Johnson, R.D., De Vries, M.: Bond lengths in free molecules of buckminsterfullerene, C60, from gas-phase electron diffraction. Science 254, 410–412 (1991)

    Google Scholar 

  247. Liu, S., Lu, Y.J., Kappes, M.M., Ibers, J.A.: The structure of the C60 molecule: X-ray crystal structure determination of a twin at 110 K. Science 254, 408–410 (1991)

    Google Scholar 

  248. Wilke, A., Endres, J., Hörmann, U., Niederhausen, J., Schlesinger, R., Frisch, J., Amsalem, P., Wagner, J., Gruber, M., Opitz, A., Vollmer, A., Brütting, W., Kahn, A., Koch, N.: Correlation between interface energetics and open circuit voltage in organic photovoltaic cells. Appl. Phys. Lett. 101, 233301 (2012)

    Google Scholar 

  249. Wojdyla, M., Derkowska, B., Lukasiak, Z., Bala, W.: Absorption and photoreflectance spectroscopy of zinc phthalocyanine (ZnPc) thin films grown by thermal evaporation. Mater. Lett. 60, 3441–3446 (2006)

    Google Scholar 

  250. Senthilarasu, S.: Thermally evaporated ZnPc thin films—band gap dependence on thickness. Sol. Energy Mater. Sol. Cells 82, 179–186 (2004)

    Google Scholar 

  251. Hush, N.S., Woolsey, I.S.: The electronic absorption spectra of phthalocyanine monomers and dimers. Mol. Phys. 21, 465–474 (1971)

    Google Scholar 

  252. Zhokhavets, U., Erb, T., Gobsch, G., Al-Ibrahim, M., Ambacher, O.: Relation between absorption and crystallinity of poly(3-hexylthiophene)/fullerene films for plastic solar cells. Chem. Phys. Lett. 418, 347–350 (2006)

    Google Scholar 

  253. Bochukov, I., Schindler, W., Johnev, B., Mete, T., Fostiropoulos, K.: Surface engineering of transparent conductive oxide (TCO) electrode using molecular termination layers. Chem. Phys. Lett. 511, 363–366 (2011)

    Google Scholar 

  254. Rand, B.P., Cheyns, D., Vasseur, K., Giebink, N.C., Mothy, S., Yi, Y., Coropceanu, V., Beljonne, D., Cornil, J., Brédas, J.-L., Genoe, J.: The impact of molecular orientation on the photovoltaic properties of a phthalocyanine/fullerene heterojunction. Adv. Funct. Mater. 22, 2987–2995 (2012)

    Google Scholar 

  255. Lüssem, B., Riede, M., Leo, K.: Doping of organic semiconductors. Phys. Status Solidi A 210, 9–43 (2013)

    Google Scholar 

  256. Kröger, M., Hamwi, S., Meyer, J., Riedl, T., Kowalsky, W., Kahn, A.: P-type doping of organic wide band gap materials by transition metal oxides: a case-study on Molybdenum trioxide. Org. Electron. 10, 932–938 (2009)

    Google Scholar 

  257. Olthof, S., Mehraeen, S., Mohapatra, S.K., Barlow, S., Coropceanu, V., Brédas, J.-L., Marder, S.R., Kahn, A.: Ultralow doping in organic semiconductors: evidence of trap filling. Phys. Rev. Lett. 109, 176601 (2012)

    Google Scholar 

  258. Tietze, M.L., Burtone, L., Riede, M., Lüssem, B., Leo, K.: Fermi level shift and doping efficiency in p-doped small molecule organic semiconductors: a photoelectron spectroscopy and theoretical study. Phys. Rev. B 86, 035320 (2012)

    Google Scholar 

  259. Wei, P., Oh, J.H., Dong, G., Bao, Z.: Use of a 1H-benzoimidazole derivative as an n-type dopant and to enable air-stable solution-processed n-channel organic thin-film transistors. J. Am. Chem. Soc. 132, 8852–8853 (2010)

    Google Scholar 

  260. Wei, Peng, M., Torben, N., Benjamin D., Leo, K., Riede, M.,Bao, Z.: 2-(2-Methoxyphenyl)-1,3-dimethyl-1H-benzoimidazol-3-ium iodide as a new air-stable n-type dopant for vacuum-processed organic semiconductor thin films. J. Am. Chem. Soc. 134, 3999–4002 (2012)

    Google Scholar 

  261. Mishra, A., Bäuerle, P.: Small molecule organic semiconductors on the move: promises for future solar energy technology. Angew. Chemie (International ed. in English) 51, 2020–2067 (2012)

    Google Scholar 

  262. Gunes, S., Neugebauer, H., Sariciftci, N.S.: Conjugated polymer-based organic solar cells. Chem. Rev. 107, 1324–1338 (2007)

    Google Scholar 

  263. Hummelen, J.C., Knight, B.W.; LePeq, F., Wudl, F., Yao, J., Wilkins, C.L.: Preparation and characterization of fulleroid and methanofullerene derivatives. J. Org. Chem. 60, 532–538 (1995)

    Google Scholar 

  264. Wienk, M.M., Kroon, J.M., Verhees, W.J.H., Knol, J., Hummelen, J.C., Hal, P.A., Janssen, R.A.J: Efficient methano[70]fullerene/MDMO-PPV bulk heterojunction photovoltaic cells. Angew. Chemie (International ed. in English) 42, 3371–3375 (2003)

    Google Scholar 

  265. Pfuetzner, S., Meiss, J., Petrich, A., Riede, M., Leo, K.: Improved bulk heterojunction organic solar cells employing C[sub 70] fullerenes. Appl. Phys. Lett. 94, 223307 (2009)

    Google Scholar 

  266. Hoppe, H.: Modeling the optical absorption within conjugated polymer/fullerene-based bulk-heterojunction organic solar cells. Sol. Energy Mater. Sol. Cells 80, 105–113 (2003)

    Google Scholar 

  267. Albrecht, S., Janietz, S., Schindler, W., Frisch, J., Kurpiers, J., Kniepert, J., Inal, S., Pingel, P., Fostiropoulos, K., Koch, N., Neher, D.: Fluorinated copolymer PCPDTBT with enhanced open-circuit voltage and reduced recombination for highly efficient polymer solar cells. J. Am. Chem. Soc. 134, 14932–14944 (2012)

    Google Scholar 

  268. Fitzner, R., Mena-Osteritz, E., Mishra, A., Schulz, G., Reinold, E., Weil, M., Körner, C., Ziehlke, H., Elschner, C., Leo, K., Riede, M., Pfeiffer, M., Uhrich, C., Bäuerle, P.: Correlation of \(\pi \)-conjugated oligomer structure with film morphology and organic solar cell performance. J. Am. Chem. Soc. 134, 11064–11067 (2012)

    Google Scholar 

  269. Fitzner, R., Reinold, E., Mishra, A., Mena-Osteritz, E., Ziehlke, H., Körner, C., Leo, K., Riede, M., Weil, M., Tsaryova, O., Weiß, A., Uhrich, C., Pfeiffer, M., Bäuerle, P.: Dicyanovinyl-substituted oligothiophenes: structure-property relationships and application in vacuum-processed small molecule organic solar cells. Adv. Funct. Mater. 21, 897–910 (2011)

    Google Scholar 

  270. Li, G., Shrotriya, V., Huang, J., Yao, Y., Moriarty, T., Emery, K., Yang, Y.: High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends. Nat. Mater. 4, 864–868 (2005)

    Google Scholar 

  271. Kim, Y., Cook, S., Tuladhar, S.M., Choulis, S.A., Nelson, J., Durrant, J.R., Bradley, D.D.C., Giles, M., McCulloch, I., Ha, C.-S., Ree, M.: A strong regioregularity effect in self-organizing conjugated polymer films and high-efficiency polythiophene: fullerene solar cells. Nat. Mater. 5, 197–203 (2006)

    Google Scholar 

  272. Zhao, G., He, Y., Li, Y.: 6.5% Efficiency of polymer solar cells based on poly(3-hexylthiophene) and indene-C(60) bisadduct by device optimization. Adv. Mater. (Deerfield Beach, Fla.) 22, 4355–4358 (2010)

    Google Scholar 

  273. Winder, C., Sariciftci, N.S.: Low bandgap polymers for photon harvesting in bulk heterojunction solar cells. J. Mater. Chem. 14, 1077 (2004)

    Google Scholar 

  274. Bundgarrd, E., Krebs, F.: Low band gap polymers for organic photovoltaics. Solar Energy Mater. Solar Cells 91, 954–985 (2007)

    Google Scholar 

  275. Dennler, G., Scharber, M.C., Brabec, C.J.: Polymer-fullerene bulk-heterojunction solar cells. Adv. Mater. 21, 1323–1338 (2009)

    Google Scholar 

  276. Roncali, Jean: Synthetic principles for bandgap control in linear pi-conjugated systems. Chem. Rev. 97, 173–206 (1997)

    Google Scholar 

  277. van Mullekom, H.: Developments in the chemistry and band gap engineering of donor-acceptor substituted conjugated polymers. Mater. Sci. Eng. R Rep. 32, 1–40 (2001)

    Google Scholar 

  278. Wudl, F., Kobayashi, M., Heeger, A.J.: Poly(isothianaphthene). J. Org. Chem. 49, 3382–3384 (1984)

    Google Scholar 

  279. Brédas, J.L., Heeger, A.J., Wudl, F.: Towards organic polymers with very small intrinsic band gaps. I. Electronic structure of polyisothianaphthene and derivatives. J. Chem. Phys. 85, 4673 (1986)

    Google Scholar 

  280. Kularatne, R.S., Magurudeniya, H.D., Sista, P., Biewer, M.C., Stefan, M.C.: Donor-acceptor semiconducting polymers for organic solar cells. J. Polym. Sci. Part A: Polym. Chem. 51, 743–768 (2013)

    Google Scholar 

  281. Mühlbacher, D., Scharber, M., Morana, M., Zhu, Z., Waller, D., Gaudiana, R., Brabec, C.: High photovoltaic performance of a low-bandgap polymer. Adv. Mater. 18, 2884–2889 (2006)

    Google Scholar 

  282. Peet, J., Kim, J.Y., Coates, N.E., Ma, W.L., Moses, D., Heeger, A.J., Bazan, G.C.: Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols. Nat. Mater. 6, 497–500 (2007)

    Google Scholar 

  283. Yamamoto, T., Lee, B.-L., Kokubo, H., Kishida, H., Hirota, K., Wakabayashi, T., Okamoto, H.: Synthesis of a new thiophene/quinoxaline CT-type copolymer with high solubility and its basic optical properties. Macromol. Rapid Commun. 24, 440–443 (2003)

    Google Scholar 

  284. Wang, E., Hou, L., Wang, Z., Hellström, S., Zhang, F., Inganäs, O., Andersson, M.R.: An easily synthesized blue polymer for high-performance polymer solar cells. Adv. Mater. 22, 5240–5244 (2010)

    Google Scholar 

  285. Tang, Z., Andersson, L.M., George, Z., Vandewal, K., Tvingstedt, K., Heriksson, P., Kroon, R., Andersson, M.R., Inganäs, O.: Interlayer for modified cathode in highly efficient inverted ITO-free organic solar cells. Adv. Mater. 24, 554–558 (2012)

    Google Scholar 

  286. Wang, E., Ma, Z., Zhang, Z., Vandewal, K., Henriksson, P., Inganäs, O., Zhang, F., Andersson, M.R.: An easily accessible isoindigo-based polymer for high-performance polymer solar cells. J. Am. Chem. Soc. 133, 14244–14247 (2011)

    Google Scholar 

  287. Topham, P.D., Parnell, A.J., Hiorns, R.C.: Block copolymer strategies for solar cell technology. J. Polym. Sci. Part B: Polym. Phys. 49, 1131–1156 (2011)

    Google Scholar 

  288. Hecht, D.S., Hu, L., Irvin, G.: Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures. Adv. Mater. (Deerfield Beach, Fla.) 23, 1482–1513 (2011)

    Google Scholar 

  289. Ellmer, Klaus: Past achievements and future challenges in the development of optically transparent electrodes. Nat. Photonics 6, 809–817 (2012)

    Google Scholar 

  290. Bae, S., Kim, H., Lee, Y., Xu, X., Park, J.-S., Zheng, Y., Balakrishnan, J., Lei, T., Kim, H.R., Song, Y.I., Kim, Y.-J., Kim, K.S., Ozyilmaz, B., Ahn, J.-H., Hong, B.H., Iijima, S.: Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 5, 574–578 (2010)

    Google Scholar 

  291. Kaskela, A., Nasibulin, A.G., Timmermans, M.Y., Aitchison, B., Papadimitratos, A., Tian, Y., Zhu, Z., Jiang, H., Brown, D.P., Zakhidov, A., Kauppinen, E.I.: Aerosol-synthesized SWCNT networks with tunable conductivity and transparency by a dry transfer technique. Nano Lett. 10, 4349–4355 (2010)

    Google Scholar 

  292. Madaria, A.R., Kumar, A., Ishikawa, F.N., Zhou, C.: Uniform, highly conductive, and patterned transparent films of a percolating silver nanowire network on rigid and flexible substrates using a dry transfer technique. Nano Res. 3, 564–573 (2010)

    Google Scholar 

  293. Heywang, G., Jonas, F.: Poly(alkylenedioxythiophene)s—new, very stable conducting polymers. Adv. Mater. 4, 116–118 (1992)

    Google Scholar 

  294. Kirchmeyer, S., Reuter, K.: Scientific importance, properties and growing applications of poly(3,4-ethylenedioxythiophene). J. Mater. Chem. 15, 2077 (2005)

    Google Scholar 

  295. Groenendaal, L., Jonas, F.: Poly (3,4-ethylenedioxythiophene) and its derivatives: past, present, and future. Adv. Mater. 481–494(2000)

    Google Scholar 

  296. Pettersson, L.A., Carlsson, F., Inganäs, O., Arwin, H.: Spectroscopic ellipsometry studies of the optical properties of doped poly(3,4-ethylenedioxythiophene): an anisotropic metal. Thin Solid Films 313–314, 356–361 (1998)

    Google Scholar 

  297. Nardes, A., Kemerink, M., Janssen, R.: Anisotropic hopping conduction in spin-coated PEDOT:PSS thin films. Phys. Rev. B 76, 085208 (2007)

    Google Scholar 

  298. Jönsson, S.K.M., Birgerson, J., Crispin, X., Greczynski, G., Osikowicz, W., van der Gon Denier, A.W., Salaneck, W.R., Fahlman, M.: The effects of solvents on the morphology and sheet resistance in poly(3,4-ethylenedioxythiophene)-polystyrenesulfonic acid (PEDOT-PSS) films. Synth. Met. 139, 1–10 (2003)

    Google Scholar 

  299. Crispin, X., Jakobsson, F.L.E., Crispin, A., Grim, P.C.M., Andersson, P., Volodin, A., van Haesendonck, C., Van der Auweraer, M., Salaneck, W.R., Berggren, M.: The origin of the high conductivity of poly(3,4-ethylenedioxythiophene)-Poly(styrenesulfonate) (PEDOT-PSS) plastic electrodes. Chem. Mater. 18, 4354–4360 (2006)

    Google Scholar 

  300. Cruz-Cruz, I., Reyes-Reyes, M., Aguilar-Frutis, M.A., Rodriguez, A.G., López-Sandoval, R.: Study of the effect of DMSO concentration on the thickness of the PSS insulating barrier in PEDOT: PSS thin films. Synth. Met. 160, 1501–1506 (2010)

    Google Scholar 

  301. Ouyang, J., Xu, Q., Chu, C.-W., Yang, Y., Li, G., Shinar, J.: On the mechanism of conductivity enhancement in poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) film through solvent treatment. Polymer 45, 8443–8450 (2004)

    Google Scholar 

  302. Kim, Y.H., Sachse, C., Machala, M.L., May, C., Müller-Meskamp, L., Leo, K.: Highly conductive PEDOT: PSS electrode with optimized solvent and thermal post-treatment for ITO-free organic solar cells. Adv. Funct. Mater. 21, 1076–1081 (2011)

    Google Scholar 

  303. Zhang, F., Johansson, M., Andersson, M.R., Hummelen, J.C., Inganäs, O.: Polymer photovoltaic cells with conducting polymer anodes. Adv. Mater. 14, 662–665 (2002)

    Google Scholar 

  304. Tvingstedt, K., Inganäs, O.: Electrode grids for ITO free organic photovoltaic devices. Adv. Mater. 19, 2893–2897 (2007)

    Google Scholar 

  305. Na, S.-I., Kim, S.-S., Jo, J., Kim, D.-Y.: Efficient and flexible ITO-free organic solar cells using highly conductive polymer anodes. Adv. Mater. 20, 4061–4067 (2008)

    Google Scholar 

  306. Yang, X., Loos, J.: Toward high-performance polymer solar cells: the importance of morphology control. Macromolecules 40, 1353–1362 (2007)

    Google Scholar 

  307. Shaheen, S.E., Brabec, C.J., Sariciftci, N.S., Padinger, F., Fromherz, T., Hummelen, J.C.: 2.5% Efficient organic plastic solar cells. Appl. Phys. Lett. 78, 841 (2001)

    Google Scholar 

  308. Yang, X., Loos, J., Veenstra, S.C., Verhees, W.J.H., Wienk, M.M., Kroon, J.M., Michels, M.A.J., Janssen, R.A.J: Nanoscale morphology of high-performance polymer solar cells. Nano Lett. 5, 579–583 (2005)

    Google Scholar 

  309. Hoppe, H., Sariciftci, N.S.: Morphology of polymer/fullerene bulk heterojunction solar cells. J. Mater. Chem. 16, 45 (2006)

    Google Scholar 

  310. Chen, L.-M., Hong, Z., Li, G., Yang, Y.: Recent progress in polymer solar cells: manipulation of polymer: fullerene morphology and the formation of efficient inverted polymer solar cells. Adv. Mater. 21, 1434–1449 (2009)

    Google Scholar 

  311. Lee, J.K., Ma, W.L., Brabec, C.J., Yuen, J., Moon, J.S., Kim, J.Y., Lee, K., Bazan, G.C., Heeger, A.J.: Processing additives for improved efficiency from bulk heterojunction solar cells. J. Am. Chem. Soc. 130, 3619–3623 (2008)

    Google Scholar 

  312. Ma, W., Kim, J.Y., Lee, K., Heeger, A.J.: Effect of the molecular weight of poly(3-hexylthiophene) on the morphology and performance of polymer bulk heterojunction solar cells. Macromol. Rapid Commun. 28, 1776–1780 (2007)

    Google Scholar 

  313. Vogel, M., Strotmann, J., Johnev, B., Lux-Steiner, M.C., Fostiropoulos, K.: Influence of nanoscale morphology in small molecule organic solar cells. Thin Solid Films 511–512, 367–370 (2006)

    Google Scholar 

  314. Wynands, D., Levichkova, M., Riede, M., Pfeiffer, M., Baeuerle, P., Rentenberger, R., Denner, P., Leo, K.: Correlation between morphology and performance of low bandgap oligothiophene: C60 mixed heterojunctions in organic solar cells. J. Appl. Phys. 107, 014517 (2010)

    Google Scholar 

  315. Padinger, F., Rittberger, R.S., Sariciftci, N.S.: Effects of postproduction treatment on plastic solar cells. Adv. Funct. Mater. 13, 85–88 (2003)

    Google Scholar 

  316. Ma, W., Yang, C., Gong, X., Lee, K., Heeger, A.J.: Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology. Adv. Funct. Mater. 15, 1617–1622 (2005)

    Google Scholar 

  317. Li, Z., Wong, H.C., Huang, Z., Zhong, H., Tan, C.H., Tsoi, W.C., Kim, J.S., Durrant, J.R., Cabral, J.T.: Performance enhancement of fullerene-based solar cells by light processing. Nat. Commun. 4, 2227 (2013)

    Google Scholar 

  318. Binnig, G., Quate, C.F.: Atomic force microscope. Phys. Rev. Lett. 56, 930–933 (1986)

    Google Scholar 

  319. García, R., Perez, R.: Dynamic atomic force microscopy methods. Surf. Sci. Rep. 47, 197–301 (2002)

    Google Scholar 

  320. Schindler, W., Wollgarten, M., Fostiropoulos, K.: Revealing nanoscale phase separation in small-molecule photovoltaic blends by plasmonic contrast in the TEM. Org. Electron. 13, 1100–1104 (2012)

    Google Scholar 

  321. Burke, K.B., Stapleton, A.J., Vaughan, B., Zhou, X., Kilcoyne, A.L.D., Belcher, W.J., Dastoor, P.C.: Scanning transmission x-ray microscopy of polymer nanoparticles: probing morphology on sub-10 nm length scales. Nanotechnology 22, 265710 (2011)

    Google Scholar 

  322. Andersson, B.V., Herland, A., Masich, S., Inganäs, O.: Imaging of the 3D nanostructure of a polymer solar cell by electron tomography. Nano Lett. 9, 853–855 (2009)

    Google Scholar 

  323. Jørgensen, M., Norrman, K., Krebs, F.C.: Stability/degradation of polymer solar cells. Solar Energy Mater. Solar Cells 92, 686–714 (2008)

    Google Scholar 

  324. Jørgensen, M., Norrman, K., Gevorgyan, S.A., Tromholt, T., Andreasen, B., Krebs, F.C.: Stability of polymer solar cells. Adv. Mater. (Deerfield Beach, Fla.) 24, 580–612 (2012)

    Google Scholar 

  325. Norrman, K., Gevorgyan, S.A., Krebs, F.C.: Water-induced degradation of polymer solar cells studied by H2(18)O labeling. ACS Appl. Mater. Interfaces 1, 102–112 (2009)

    Google Scholar 

  326. Hermenau, M., Riede, M., Leo, K., Gevorgyan, S.A., Krebs, F.C., Norrman, K.: Water and oxygen induced degradation of small molecule organic solar cells. Solar Energy Mater. Solar Cells 95, 1268–1277 (2011)

    Google Scholar 

  327. Hermenau, M., Schubert, S., Klumbies, H., Fahlteich, J., Müller-Meskamp, L., Leo, K., Riede, M.: The effect of barrier performance on the lifetime of small-molecule organic solar cells. Sol. Energy Mater. Sol. Cells 97, 102–108 (2012)

    Google Scholar 

  328. Neugebauer, H., Brabec, C., Hummelen, J.C., Sariciftci, N.S.: Stability and photodegradation mechanisms of conjugated polymer/fullerene plastic solar cells. Solar Energy Mater. 61, 35–42 (2000)

    Google Scholar 

  329. Scholz, S., Corten, C., Walzer, K., Kuckling, D., Leo, K.: Photochemical reactions in organic semiconductor thin films. Org. Electron. 8, 709–717 (2007)

    Google Scholar 

  330. Manor, A., Katz, E.A., Tromholt, T., Krebs, F.C.: Electrical and photo-induced degradation of ZnO layers in organic photovoltaics. Adv. Energy Mater. 1, 836–843 (2011)

    Google Scholar 

  331. Schäfer, S., Petersen, A., Wagner, T.A., Kniprath, R., Lingenfelser, D., Zen, A., Kirchartz, T., Zimmermann, B., Würfel, U., Feng, X., Mayer, T.: Influence of the indium tin oxide/organic interface on open-circuit voltage, recombination, and cell degradation in organic small-molecule solar cells. Phys. Rev. B 83, 165311 (2011)

    Google Scholar 

  332. Hermenau, M., Scholz, S., Leo, K., Riede, M.: Total charge amount as indicator for the degradation of small molecule organic solar cells. Sol. Energy Mater. Sol. Cells 95, 1278–1283 (2011)

    Google Scholar 

  333. Parker, I.D., Cao, Y., Yang, C.Y.: Lifetime and degradation effects in polymer light-emitting diodes. J. Appl. Phys. 85, 2441 (1999)

    Google Scholar 

  334. Tanenbaum, D.M., Hermenau, M., Voroshazi, E., Lloyd, M.T., Galagan, Y., Zimmermann, B., Hösel, M., Dam, H.F., Jørgensen, M., Gevorgyan, S.A., Kudret, S., Maes, W., Lutsen, L., Vanderzande, D., Würfel, U., Andriessen, R., Rösch, R., Hoppe, H., Teran-Escobar, G., Lira-Cantu, M., Rivaton, A., Uzuno-C̆lu, G.Y., Germack, D., Andreasen, B., Madsen, M.V., Norrman, K., Krebs, F.C.: The ISOS-3 inter-laboratory collaboration focused on the stability of a variety of organic photovoltaic devices. RSC Adv. 2, 882 (2012)

    Google Scholar 

  335. Forrest, S.R.: Ultrathin organic films grown by organic molecular beam deposition and related techniques. Chem. Rev. 97, 1793–1896 (1997)

    Google Scholar 

  336. Drechsel, J., Petrich, A., Koch, M., Pfützner, S., Meerheim, R., Scholz, S., Walzer, K., Pfeiffer, M., Leo, K.: 53.3: Influence of material purification by vacuum sublimation on organic optoelectronic device performance. SID Symp. Dig. Tech. Pap. 37, 1692–1695 (2006)

    Google Scholar 

  337. Freitag, P.: White top-emitting OLEDs on metal substrates. TU Dresden, Ph.D. thesis (2010)

    Google Scholar 

  338. Li, Z., Gao, F., Greenham, N.C., McNeill, C.R.: Comparison of the operation of polymer/fullerene, polymer/polymer, and polymer/nanocrystal solar cells: a transient photocurrent and photovoltage study. Adv. Funct. Mater. 21, 1419–1431 (2011)

    Google Scholar 

  339. Brabec, C.J., Gowrisanker, S., Halls, J.J.M., Laird, D., Jia, S., Williams, S.P.: Polymer-fullerene bulk-heterojunction solar cells. Adv. Mater. (Deerfield Beach, Fla.) 22, 3839–3856 (2010)

    Google Scholar 

  340. Li, G., Zhu, R., Yang, Y.: Polymer solar cells. Nat. Photonics 6, 153–161 (2012)

    Google Scholar 

  341. Zhou, H., Yang, L., You, W.: Rational design of high performance conjugated polymers for organic solar cells. Macromolecules 45, 607–632 (2012)

    Google Scholar 

  342. McNeill, C.R., Greenham, N.C.: Conjugated-polymer blends for optoelectronics. Adv. Mater. 21, 3840–3850 (2009)

    Google Scholar 

  343. Gao, F., Ren, S., Wang, J.: The renaissance of hybrid solar cells: progresses, challenges, and perspectives. Energy Environ. Sci. 6, 2020 (2013)

    Google Scholar 

Further Reading

  1. Book on the basics of organic semiconductors: Schwoerer, M., Wolf, H.C.: Organic Molecular Solids. Wiley-VCH, (2006)

    Google Scholar 

  2. Publication on the development of polymer: fullerene solar cell efficiencies—from 1 to 10 %: Brabec, C.J., Gowrisanker, S., Halls, J.J.M., Laird, D., Jia, S., Williams, S.P.: Polymer-fullerene bulk-heterojunction solar cells. Adv. Mater. (Deerfield Beach, Fla.) 22, 3839–3856 (2010)

    Google Scholar 

  3. Compact and well-illustrated review on the crucial points in bulk heterojunction solar cells: Li, G., Zhu, R., Yang, Y.: Polymer solar cells. Nat. Photonics 6, 153–161 (2012)

    Google Scholar 

  4. Comprehensive and well-explained review on the design approaches of donor polymers: Zhou, H., Yang, L., You, W.: Rational design of high performance conjugated polymers for organic solar cells. Macromolecules 45, 607–632 (2012)

    Google Scholar 

  5. Review focusing on morphology of polymer-polymer blends for organic light emitting diodes and solar cells: McNeill, C.R., Greenham, N.C.: Conjugated-polymer blends for optoelectronics. Adv. Mater. 21, 3840–3850 (2009)

    Google Scholar 

  6. Review on the history and working principles of polymer-nano crystal solar cells: Gao, F., Ren, S., Wang, J.: The renaissance of hybrid solar cells: progresses, challenges, and perspectives. Energy Environ. Sci. 6, 2020 (2013)

    Google Scholar 

  7. Derivation of the open-circuit voltage of a bilayer device: Cheyns, D., Poortmans, J., Heremans, P., Deibel, C., Verlaak, S., Rand, B.P., Genoe, J.: Analytical model for the open-circuit voltage and its associated resistance in organic planar heterojunction solar cells. Phys. Rev. B 77, 165332 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Tress .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Tress, W. (2014). Organic Solar Cells. In: Organic Solar Cells. Springer Series in Materials Science, vol 208. Springer, Cham. https://doi.org/10.1007/978-3-319-10097-5_3

Download citation

Publish with us

Policies and ethics